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Barnes [ l] has constructed an example of a commutative semi-
simple normed annihilator algebra which is not a dual algebra. His 
example is not complete and when completed acquires a nonzero 
radical. In this paper we construct an example which is complete. 
The theory of annihilator algebras is developed e.g. in [2]. 

We putai=(l + (l+i) 1i2)~2 for i^l and denote by A0 the algebra 
of doubly infinite sequences a with a; = 0 for all but a finite number 
of values of i, with coordinatewise addition and multiplication. We 
define a norm on A 0 by 
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This is easily seen to be a linear space norm on Ao and we have that 
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