AN EXAMPLE IN THE CALCULUS OF FOURIER TRANSFORMS

BY ROBERT KAUFMAN

Communicated by R. C. Buck, December 21, 1966

0. The functions which operate on Fourier or Fourier-Stieltjes transforms have been investigated by Helson, Kahane, Katznelson, and Rudin, especially in [1]. In this note we give an example of a positive measure on the Cantor group D_2 , whose Fourier-Stieltjes transform has range in [0, 1], and on which the continuous functions operating must have a high degree of analyticity. Our method of expanding this function is based on Bernstein polynomials and is quite different from that of [1].

1. Let D_2 be the complete direct sum $Z_2 \oplus Z_2 \oplus Z_2 \oplus \cdots$, e_n the unit mass at 0 in the *n*th factor, m_n the uniform (1/2, 1/2) mass in the same group. For a dense sequence $\{a_n\} \subseteq [0, 1]$ we form the infinite product measure

$$\mu = \prod_{1}^{\infty} \left\{ a_n e_n + (1 - a_n) m_n \right\}.$$

Denote by W the set of complex numbers $\{|z| < 1\} - \{-1 < z \le 0\}$.

THEOREM. If f is continuous in [0, 1] and $f \circ \hat{\mu}$ is a Fourier-Stieltjes transform on \hat{D}_2 , then f can be extended to a function bounded and analytic in W.

The proof is based on certain measures σ on the N-fold sum $Z_2 \oplus Z_2 \oplus \cdots \oplus Z_2$, in which each element is an N-tuple (x_1, x_2, \cdots, x_N) $(x_i=0, 1, 1 \le i \le N)$. Say that σ is special if it is invariant with respect to permutations of the coordinates x_1, \cdots, x_N . A special measure is a linear combination of the measures $\sigma_j, 0 \le j \le N$, described as follows: σ_j assigns mass 1 to every element x for which $\sum_{i=1}^N x_k = j$.

For any special measure σ there are defined numbers $b_0, \dots, b_N : b_k$ is the value of $\hat{\sigma}$ on the character

$$x \to (-1)^{\sum_{i=1}^{k} x_i}.$$

LEMMA. For a special measure σ , set

$$B(x) = \sum_{0}^{N} b_k {\binom{N}{k}} x^k (1-x)^{N-k}.$$