INTRINSIC METRICS ON COMPLEX MANIFOLDS

BY SHOSHICHI KOBAYASHI¹

Communicated by S. Smale, January 17, 1967

1. Definition of intrinsic pseudometric. Let M be a (connected) complex manifold. We shall define a pseudometric d on M in a natural manner so that it depends only on the complex structure of M and nothing else.

Let D be the open unit disk in the complex plane and ρ the distance on D defined by the Poincaré-Bergman metric of D. Given two points p and q of M, choose the following objects:

(1) points $p = p_0, p_1, \cdots, p_{k-1}, p_k = q$ of M and

(2) points $a_1, \dots, a_k, b_1, \dots, b_k$ of D and holomorphic mappings f_1, \dots, f_k of D into M such that $f_i(a_i) = p_{i-1}$ and $f_i(b_i) = p_i$ for $i = 1, \dots, k$.

For each choice of points and mappings satisfying (1) and (2), consider the number $\rho(a_1, b_1) + \cdots + \rho(a_k, b_k)$. Let d(p, q) be the infimum of the numbers obtained in this manner for all possible choices. It is easy to verify that d is a pseudometric on M in the sense that

 $d(p,q) \ge 0, \quad d(p,q) = d(q,p), \quad d(p,q) + d(q,r) \ge d(p,r)$

for p, q, $r \in M$. The following two propositions are immediate from the definition of d.

PROPOSITION 1. Let M and N be two complex manifolds and d_M and d_N the intrinsic pseudometrics of M and N. Then every holomorphic mapping $f: M \rightarrow N$ is distance-decreasing in the sense that

 $d_M(p,q) \ge d_N(f(p), f(q))$ for $p, q \in M$.

In particular, every holomorphic transformation of M is distancepreserving with respect to d_M .

PROPOSITION 2. For the complex Euclidean space C^n , the pseudometric d is trivial, i.e., d(p, q) = 0 for all $p, q \in C^n$.

The following proposition follows from the Schwarz-Pick lemma.

PROPOSITION 3. For the unit disk D, the pseudometric d coincides with the distance ρ defined by the Poincaré-Bergman metric.

¹ Supported partially by NSF Grant GP-5798.