THE LOCAL RING OF THE GENUS THREE MODULUS SPACE AT KLEIN'S 168 SURFACE

BY H. E. RAUCH ${ }^{1}$
Communicated by E. Calabi, November 28, 1966

1. Introduction. In [6], as a synthesis of earlier papers of mine, I give, in the form of a set of prescriptions for local coordinates, a description of M^{g}, the space of conformal equivalence classes of compact Riemann surfaces of genus g, as a complex space. Particular interest attaches to those points (surface classes) of M^{g} representing surfaces admitting conformal self-maps (automorphisms) because, outside of certain cases for $g=1,2,3$ (over and above the elliptic and hyperelliptic involutions for $g=1,2$), these points are singular (nonuniformizable) points in the structure. In particular for $g \geqq 2$, where one needs $3 g-3$ complex parameters to describe M^{g} near a generic point, one needs $3 g-3+\rho, \rho>0$, near one of the points in question. ${ }^{2}$ According to Prescription III ([6, p. 17]) the problem reduces to finding an irreducible basis for the homogeneous nonconstant, polynomial invariants of a finite group of linear transformations in $3 g-3$ variables, namely, the hermitian adjoint of the group induced on the quadratic differentials of a representative surface of the point in question by the conformal automorphism group of that surface.

For a finite nonabelian linear group, while there is an algorithm for computing some basis for the invariants (cf. Prescription III), there is notoriously no known algorithm for computing an irreducible basis, i.e., for discarding the superfluous ones. Accordingly I felt it of interest to illustrate the whole phenomenon by a nontrivial example. To anyone who has worked on the subject the one that immediately comes to mind is Klein's surface of genus three admitting as automorphism group a representation of the simple group of order 168 ([1], [3]). This example commends itself in that it is of "maximum complexity" in the sense that it admits its full quota according to Hurwitz [2] of $84(g-1)=168,(g=3)$ automorphisms (on the subject of such surfaces see the interesting papers [4], [5]). It develops, vide infra, that eleven invariants, i.e., $11=3 \cdot 3-3+5=6+5$, so $\rho=5$, are needed to generate the local ring of M^{3} at Klein's surface class. ${ }^{2}$

[^0]
[^0]: ${ }^{1}$ Research partially sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, U. S. Air Force, under AFOSR Grant No. AF-AFOSR-1077-66.
 ${ }^{2}$ With ρ relations on "syzygies," of course.

