EQUIVARIANT STABLE STEMS¹

BY GLEN E. BREDON

Communicated by S. Smale, November 14, 1966

Let $S^n(r)$ denote the *n*-sphere with a linear involution having a fixed point set of codimension *r*, where $0 \le r \le n$. We pick some fixed point as a base point and consider the set $[S^n(r); S^k(t)]$ of base point preserving equivariant homotopy classes of maps from $S^n(r)$ to $S^k(t)$. This has a natural group structure for $n-r\ge 1$ and is abelian if $n-r\ge 2$.

There is a suspension functor S without action and one Σ with action (that is, the reduced join with $S^1(0)$ and $S^1(1)$ respectively). These induce homomorphisms

$$[S^{n+1}(r); S^{k+1}(t)] \stackrel{S}{\leftarrow} [S^n(r); S^k(t)] \stackrel{\Sigma}{\rightarrow} [S^{n+1}(r+1); S^{k+1}(t+1)].$$

It can be shown that S is an epimorphism when $n \le 2k-1$ and $n-r \le 2(k-t)-1$ and is an isomorphism if the strict inequalities hold. Similarly, Σ is an epimorphism when $n \le 2k-1$ and $n-r \le k-1$ and is an isomorphism if the strict inequalities hold. By passing to the S-limit we define

$$\pi_n(r; t) = \lim_{k} \left[S^{n+k}(r); S^k(t) \right].$$

 Σ induces $\Sigma: \pi_n(r; t) \to \pi_n(r+1; t+1)$ which is an epimorphism when $n \leq r-1$ and an isomorphism when $n \leq r-2$. By passing to the Σ -limit we define

$$\pi_{n,k} = \lim_{t} \pi_n(t+k;t).$$

There is the forgetful functor ψ (forgetting equivariance) and the fixed point set functor ϕ which yield homomorphisms

(1)
$$\pi_n \stackrel{\Psi}{\leftarrow} \pi_n(r; t) \stackrel{\phi}{\rightarrow} \pi_{n-r+i}$$

where π_n denotes the classical *n*-stem. For the doubly stable groups these become

(2)
$$\begin{aligned} & \psi \\ & \pi_n \leftarrow \phi \\ & \pi_{n,k} \rightarrow \pi_{n-k}. \end{aligned}$$

¹ This research was supported in part by National Science Foundation grant GG-3990 and by a Sloan fellowship.