SEMI-IDEMPOTENT MEASURES ON ABELIAN GROUPS¹

BY IRVING KESSLER

Communicated by E. Hewitt, September 26, 1966

Let M(G) denote the set of complex valued regular Borel measures on a compact abelian group G. We assume that Γ , the dual group of G, is a totally ordered group. Let F(G) denote the set of all $\mu \in M(G)$ such that the Fourier transform $\hat{\mu}$ of μ is an integer valued function. A measure μ is idempotent if $\hat{\mu}$ assumes only the values 0 or 1. A $\mu \in M(G)$ is semi-idempotent if $\hat{\mu}(\gamma) = 0$ or 1 for all $\gamma > 0$ in Γ .

The purpose of this note is to sketch a proof of the following theorem.

THEOREM 1. If $\mu \in M(G)$ and $\hat{\mu}(\gamma)$ is an integer for all $\gamma > 0$ in Γ , then there exists a $\lambda \in F(G)$ such that $\lambda(\gamma) = \hat{\mu}(\gamma)$ for all $\gamma > 0$. In particular, if μ is a semi-idempotent measure on G, then there exists an idempotent measure λ on G such that $\hat{\mu}(\gamma) = \hat{\lambda}(\gamma)$ for all $\gamma > 0$ in Γ .

This result was obtained by Helson [3], for the case G=T, the circle group, $\Gamma = Z$ the integer group. Also a special case of Theorem 1 for $G = T^2$, $\Gamma = Z^2$ was proven by Rudin [6].

OUTLINE OF PROOF. We assume first that $G = T^k$, the k-dimensional torus group and $\Gamma = Z^k$ is a totally ordered group. Then $Z^k = \Gamma_1 \oplus \Gamma_2$ where Γ_2 is a subgroup of the reals, Γ_1 is a totally ordered group, and $\Gamma_1 \oplus \Gamma_2$ is lexicographically ordered from the right. Let $\mu \in M(G)$ such that $\hat{\mu}(\gamma)$ is an integer for all $\gamma > 0$ in Z^k .

Let $E(\mu) = \{\gamma \in \mathbb{Z}^k : \gamma > 0 \text{ and } \hat{\mu}(\gamma) \neq 0\}$ and, for every positive integer *n*, let

$$A_n = \{\gamma \cdot \mu \in M(G) : \gamma = (\gamma_1, \gamma_2) \in E(\mu) \text{ and } \gamma_2 > n\}.$$

We then prove the following

LEMMA. If $E(\mu)$ and A_n are defined as above, we have either

(1) $E(\mu)$ is contained in a finite union of (k-1)-dimensional hyperplanes, or

(2) $A_n \neq \emptyset$ for every n.

If (1), then Theorem 1 follows by induction. If (2), we set

¹ This is an announcement of a portion of the author's dissertation at the University of Wisconsin written under the direction of Professor Walter Rudin.