REFLEXION SPACES AND HOMOGENEOUS SYMMETRIC SPACES

BY OTTMAR LOOS¹

Communicated by R. S. Palais, November 7, 1966

1. A reflexion space is a set M with a multiplication $\mu: M \times M \rightarrow M$, $(x, y) \mapsto x \cdot y$, satisfying the following axioms:

$$(S_1) x \cdot x = x,$$

$$(S_2) x \cdot (x \cdot y) = y,$$

$$(S_3) x \cdot (y \cdot z) = (x \cdot y) \cdot (x \cdot z).$$

Let be $S(x): y \mapsto x \cdot y$ the left multiplication with x in M. This is an involutive map of M onto itself leaving x fixed, which may be interpreted as the reflexion in the point x.

Let $\mathfrak A$ be a finite dimensional Jordan algebra and I the set of invertible elements of $\mathfrak A$. In general for $x, y \in I$ their product xy is not in I, so I does not inherit a multiplicative structure from $\mathfrak A$. However, $x \cdot y = 2x(xy^{-1}) - x^2y^{-1}$ is invertible ([1]), and the multiplication $x \cdot y$ makes I a reflexion space. Every group is a reflexion space with the new product $x \cdot y = xy^{-1}x$. Every set is a reflexion space with the trivial product $x \cdot y = y$ for all x and y.

A reflexion space M where M is a connected paracompact C^{∞} -manifold and $\mu \colon M \times M \to M$ is differentiable is called a differentiable reflexion space. The following construction gives examples. Let G be a connected Lie group, σ an involutive automorphism of G and G and its identity component. Then G/H is a homogeneous symmetric space and G(G/H, H) is a principal fibre bundle with base space G/H and structure group G. Let G operate on a connected manifold G on the left and let be $G \times_H F$ the bundle associated with G(G/H, H) with typical fibre G (cf. [2]). We denote the equivalence class of G and G is a point, we have $G \times_H F = G/H$.

PROPOSITION 1. $G \times_H F$ is a differentiable reflexion space with the multiplication

$$(f \otimes x) \cdot (g \otimes y) = (f(f^{\sigma})^{-1}g^{\sigma}) \otimes y.$$

¹ This work is a generalization of part of the author's doctoral dissertation at the University of Munich under Professor M. Koecher.