## ON ČEBYŠEV SUBSPACES AND UNCONDITIONAL BASES IN BANACH SPACES

BY J. R. RETHERFORD1

Communicated by F. Browder, October 31, 1966

1. Introduction. Let E be a Banach space, Z a linear subspace of E and x an element of E. An element  $z_0 \in Z$  is a best approximation of x from Z provided

$$||x-z_0|| = \inf_{z \in \mathbb{Z}} ||x-z||.$$

Thus, to every linear subspace  $Z \subset E$  and element  $x \in E$  there corresponds a bounded closed convex (possibly empty) set

$$B_Z(x) = \{z_0 \in Z : ||x - z_0|| = \inf_{z \in Z} ||x - z|| \}.$$

Following Phelps [9] we say that  $Z \subset E$  is a Čebyšev subspace if  $B_Z(x)$  is one pointed for each  $x \in E$ .

If  $(x_i, f_i)$  is a Schauder basis for E, i.e.  $(x_i) \subset E$ ,  $(f_i) \subset E^*$ ,  $f_i(x_j) = \delta_{ij}$  and  $x = \sum_{i=1}^{\infty} f_i(x) x_i$  for each  $x \in E$ , let  $L_n = [x_i | i \le n]$ , the linear span of  $x_1, \dots, x_n$  and let  $L^n = [x_i | i > n]$ , the closed linear span of  $x_{n+1}, x_{n+2}, \dots$ . Also, let  $s_n(x) = \sum_{i=1}^n f_i(x) x_i$  and  $s^n(x) = \sum_{i=n+1}^{\infty} f_i(x) x_i = x - s_n(x)$ . V. N. Nikol'skii [7], [8] has shown that in a Banach space E with a Schauder basis, an equivalent norm can be given E such that, with respect to this new norm, both  $L_n$  and  $L^n$  are Čebyšev subspaces and, moreover,

$$B_{L_n}(x) = \left\{ s_n(x) \right\}$$
 and  $B_{L^n}(x) = \left\{ s^n(x) \right\}.$ 

Now let  $(x_i, f_i)$  be an unconditional basis for E, i.e. a Schauder basis with the property that  $x = \sum_{i=1}^{\infty} f_{p(i)}(x) x_{p(i)}$  for each permutation p of  $\omega$  (the positive integers) and each  $x \in E$ . If  $\sigma \in \Sigma$ , the finite subsets of  $\omega$ , let  $L_{\sigma} = [x_i | i \in \sigma]$ ,  $L^{\sigma} = \{x_i | i \in \omega \setminus \sigma]$ ,  $s_{\sigma}(x) = \sum_{i \in \sigma} f_i(x) x_i$  and  $s^{\sigma}(x) = x - s_{\sigma}(x)$ . Also, let  $B_{\sigma}(x) = B_{L_{\sigma}}(x)$  and  $B^{\sigma}(x) = B_{L_{\sigma}}(x)$ .

Motivated by the fundamental work of Nikol'skiĭ mentioned above and by a theorem of Gelfand [3], Singer [10] showed that the norm, | |, defined by

$$|x| = \sup_{\sigma \in \Sigma} \left\| \sum_{i \in \sigma} f_i(x) x_i \right\| + \sum_{i=1}^{\infty} \left\| f_i(x) x_i \right\| / 2^i$$

<sup>&</sup>lt;sup>1</sup> Research supported by NSF Grant GP 5854.