HIGHER RANK CLASS GROUPS¹

BY LUTHER CLABORN AND ROBERT FOSSUM

Communicated by P. T. Bateman, October 24, 1966

Let A be a noetherian ring which is locally Macaulay. For each integer $i \ge 0$, groups $C_i(A)$ and $W_i(A)$ are defined, each sequence of groups generalizing to higher dimensions the usual class group of an integrally closed noetherian domain. $C_i(A)$ is called the *i*th *class group* of A, and $W_i(A)$ is called the *i*th *homological class group* of A. The main purpose of this note is to show that both sequences of groups have properties analogous to the class group of a Noetherian integrally closed integral domain, and finally to establish a connection between them.

1. Throughout this section A is a commutative noetherian ring which is locally Macaulay. A set of elements x_1, \dots, x_s is an Asequence of length s if $x_1A + \dots + x_sA \neq A$ and $x_1A + \dots + x_iA$: $x_{i+1} = x_1A + \dots + x_iA$ for $i = 0, 1, \dots, s - 1$. Count the empty set as an A-sequence of length 0 and specify that it generate the zero ideal of A.

Note that if x_1, \dots, x_s is an A-sequence of length s, then $x_1A + \dots + x_sA$ is an unmixed ideal of A of height s.

For each $i \ge 0$, form the free abelian group on the generators $\langle \mathfrak{p} \rangle$ where \mathfrak{p} is a height *i* prime ideal of *A*. This group will be denoted by $D_i(A)$. For each *A*-sequence x_1, \dots, x_i , consider the element $\sum e(x_1, \dots, x_i | A_\mathfrak{p}) \langle \mathfrak{p} \rangle$ of D_i (here $e(y_1, \dots, y_i | M)$ denotes the multiplicity of $y_1A + \dots + y_iA$ on *M*). Let R_i designate the subgroup of D_i generated by all such elements. Set $C_i(A) = D_i(A)/R_i$ and call $C_i(A)$ the class group of rank *i* for *A*. Denote the image of $\langle \mathfrak{p} \rangle$ in $C_i(A)$ by $cl(\mathfrak{p})$. Set $C_i(A) = \oplus C_i(A)$.

EXAMPLES. $C_0(A)$ is always finitely generated. $C_0(A)$ is finite if and only if (0) is a primary ideal of $A \cdot C_0(A) = 0$ if and only if A is a domain.

If A is a Dedekind domain, then $C_1(A)$ is the ordinary ideal class group of A. More generally, if A is integrally closed, then $C_1(A)$ is the class group of A [1, §1, no. 10].

We have not been able to locate the following lemma in the literature.

¹ This research was supported by the National Science Foundation Grant GP-5478.