AUTOMORPHISMS OF COMPACT RIEMANN SURFACES AND THE VANISHING OF THETA CONSTANTS

BY H. M. FARKAS ${ }^{1}$
Communicated by Maurice Heins, October 13, 1966

I. It is the purpose of this note to announce a theorem which shows that there exists a connection between automorphisms of compact Riemann surfaces and the vanishing of Riemann theta constants. In particular we shall outline the proof of the following theorem:

Theorem 1. Let S be a compact Riemann surface of genus $2 g-1$, $g \geqq 2$, which permits a conformal fixed point free involution T. Let $\gamma_{1}, \cdots, \gamma_{2 g-1} ; \delta_{1}, \cdots, \delta_{2 g-1}$ be a canonical dissection of S and let T be such that $T\left(\gamma_{1}\right)$ is homologous to $\gamma_{1}, T\left(\delta_{1}\right)$ is homologous to $\delta_{1}, T\left(\gamma_{i}\right)$ is homologous to γ_{g+i-1} and $T\left(\delta_{i}\right)$ is homologous to $\delta_{g+i-1}, i=2, \cdots, g$. Then, there exist at least $2^{g-2}\left(2^{g-1}-1\right)$ half integer theta characteristics ϵ_{1}, \cdots such that $\theta_{\epsilon_{1}}(0)=\theta_{\epsilon_{2}}(0)=\cdots=0$ and the order of the zero is $\geqq 2$.

The proof of the theorem rests on the fact that S is a two sheeted nonbranched covering of a compact Riemann surface of genus g and the following lemma which was proved in [1].

Lemma 1. Let ζ, ω be equivalent special divisors of degree $G-1$ on a compact Riemann surface S of genus G. Then if $i(\zeta \omega)=1$, where " i " is the index of specialty of the divisor, there exists a half integer characteristic ϵ corresponding to the divisor ζ such that $\theta_{\epsilon}(0)=0$ and the order of the zero is $\geqq 2 . \theta$ is of course the Riemann theta of S.
II. Let $\hat{S}=S / T$ denote the compact Riemann surface of genus g which is covered by S. Then all the functions and differentials which exist and are well defined on \widehat{S} may be lifted to S and are well-defined objects thereon. As a matter of fact all such lifted functions and differentials will be invariant under the involution T and conversely all objects on S which are invariant under T are well defined on \hat{S}. There are, however, objects which are not well defined on \hat{S} but are well defined on S. For example, let $\hat{\theta}_{\alpha}$ and $\hat{\theta}_{\beta}$ be two odd Riemann thetas associated with \hat{S} such that $\alpha+\beta \equiv \delta$ where δ is the characteristic ($0, \cdots, 0 ; \frac{1}{2}, 0 \cdots 0$), α, β half integer characteristics. Then the quotient $\hat{\theta}_{\alpha} / \hat{\theta}_{\beta}$ is not well defined on \hat{S} for analytic continuation of

[^0]
[^0]: ${ }^{1}$ Research partially supported by NSF GP 3452.

