ON CONVOLUTION AND FOURIER SERIES

BY JACK BRYANT

Communicated by A. Zygmund, September 8, 1966
In [4, pp. 108-114], Salem found that each function in $L_{1}(0,2 \pi)$ (or $C[0,2 \pi]$) can be represented as the convolution of a function in L (or C) with an even function in L with convex Fourier coefficients. We announce here a slight generalization of this theorem, and some related results which follow from a study of our methods. Detailed proofs will appear elsewhere [2].

We require the following notation: If f is a function, $\left(\tau_{h} f\right)(x)$ $=f(x+h) . B$ will denote a Banach space with norm $\|\cdot\|$. If $f \in L$, $S[f]$ denotes the Fourier series of $f,\left\{S_{n}\right\}$ the partial sums of $S[f]$ and $\left\{\sigma_{n}\right\}$ the $(C, 1)$ means of $S[f] .\|\cdot\| \|_{1}$ denotes the L_{1}-norm. If $\left\{\lambda_{n}\right\}$ is a sequence, $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$ and $\Delta^{2} \lambda_{n}=\Delta \lambda_{n}-\Delta \lambda_{n+1}$. We define Q to be the class of functions g with $S[g]=\lambda_{0} / 2+\sum \lambda_{n} \cos n x$, where $\Delta^{2} \lambda_{n} \geqq 0$ and $\lambda_{n} \rightarrow 0$. Note each function in Q is even, positive, integrable and differentiable on ($0, \pi$). A will denote an absolute constant, not necessarily the same each time it appears.

Theorem 1. Suppose $S=\sum A_{n}$ is summable $(C, 1)$ to f in a Banach space B. Let ϕ be a positive increasing function with $\int_{0}^{\infty} 1 / \phi(t) d t<\infty$. Let $\left\{\sigma_{n}\right\}$ be the $(C, 1)$ means of S; if $\left\{\lambda_{n}\right\}$ is a sequence such that $0<\lambda_{n} \leqq \phi^{-1}\left(\left\|\sigma_{n}-f\right\|^{-1}\right), \Delta^{2} \lambda_{n} \leqq 0$ and $\lambda_{n} \uparrow \infty$, then the series $T=\sum \lambda_{n} A_{n}$ is summable $(C, 1)$ in B.

Theorem 2. Let $B \subset L$ be a Banach space with $\|u\|_{1} \leqq A\|u\|$ for each u in B, and suppose the $(C, 1)$ means of $S[f]$ are in B and $\left\|\sigma_{n}-f\right\| \rightarrow 0$. Then there exists $g \in Q$ and $h \in B$ such that $f=g * h$.

Theorem 3. Let $f \in L$. Then $f=g * h$, where $g \in Q$ and $S[h]$ and $S[f]$ have, except for a set of measure zero, the same points of convergence.

Theorem 4. Suppose $f \in L$, and let $\left\{\sigma_{n}\right\}$ be the $(C, 1)$ means of $S[f]$. If $\sum\left\|\sigma_{k}-f\right\|_{1} / k<\infty$ and if $\left\|\sigma_{k}-f\right\|_{1}=o(1 / \log k)$, then $S[f]$ converges almost everywhere.

If we suppose more about B, Theorem 2 can be completed as follows:

Theorem 5. Let $B \subset L$ satisfy the following conditions: B is a Banach space and
(1) for each u in $B,\|u\|_{1} \leqq A\|u\|$,
(2) for each u in B and each $h,\left\|\tau_{h} u\right\| \leqq A\|u\|$,

