SCHOTTKY GROUPS AND LIMITS OF KLEINIAN GROUPS¹

BY VICKI CHUCKROW

Communicated by Lipman Bers, August 15, 1966

DEFINITION. A group of Möbius transformations is said to be a marked Schottky group of genus g with standard generators T_1, \dots, T_g , if there exist disjoint Jordan curves $\Gamma_1, \Gamma'_1, \dots, \Gamma_g, \Gamma'_g$, which bound a 2g-times connected domain D, such that $T_j(D) \cap D = \emptyset$ and $T_j(\Gamma_j) = \Gamma'_j, j = 1, \dots, g$.

LEMMA 1. If G is a Schottky group of genus g, then G is a marked Schottky group on every set of g free generators; i.e., every set of g free generators for G is standard.

The proof is based on the classical theorem on automorphisms of finitely generated free groups.

LEMMA 2. Every finitely generated subgroup of a Schottky group is a Schottky group.

The proof uses the fact that all Schottky groups are quasi-conformally equivalent to certain Fuchsian groups.

REMARK. The preceding two lemmas can be generalized, with appropriate modifications, to *Schottky type groups* (see [1] for the definition).

THEOREM 1. Let T_1, \dots, T_g be g > 1 Möbius transformations. Suppose there exist marked Schottky groups of genus $g, \langle T_{1,n}, \dots, T_{g,n} \rangle$, such that $\lim_{n\to\infty} T_{j,n} = T_j, j = 1, \dots, g$. Then the group G generated by T_1, \dots, T_g is a free group on g generators, without elliptic elements.

The proof uses Lemmas 1 and 2 and involves an elementary area argument.

DEFINITION. An isomorphism $\phi: G_1 \rightarrow G_2$ between two Kleinian groups is said to be *type preserving* if $\phi(T)$ is parabolic if and only if T is.

THEOREM 2. For every $n = 0, 1, 2, \cdots$, let $G(n) = \{T_j(n), j=0, 1, \cdots\}$ be a Kleinian group. Assume that there are Möbius transformations T_j such that $\lim_{n\to\infty} T_j(n) = T_j$, and denote the group $\{T_j, j=0, 1, \cdots\}$ by G. Assume also that all mappings $T_j(0) \rightarrow T_j(n)$

¹ This research was supported by a National Science Foundation Fellowship and constitutes a doctoral thesis.