ON MANIFOLDS WITH INVOLUTION

BY J. M. BOARDMAN
Communicated by P. E. Conner, July 25, 1966

We consider a smooth involution ω on a smooth closed n-manifold M from the bordism point of view, as in [2, Chapter IV]. We know that the fixed-point set of ω is the disjoint union of submanifolds; let k be the maximum dimension of these. It is clear that if ω is free, M bounds a 1 -disk bundle over the orbit space. Now fix k, and let n, M, and ω vary. Conner and Floyd prove [2, Theorem (27.1)] that if M does not bound, n cannot be arbitrarily large. Their proof is nonconstructive, and fails to give an upper bound for n. We obtain the precise bound.

Theorem 1. Suppose k is the maximum dimension of the fixed-point submanifolds of the smooth involution ω on the closed nonbounding n manifold M. Then $n \leqq 5 k / 2$ (if k is even) or $n \leqq(5 k-1) / 2$ (if k is odd). Further, if we are given that the unoriented cobordism class of M is indecomposable, then $n \leqq 2 k+1$.

Examples in the extremal dimensions are easily constructed. Take homogeneous coordinates ($x_{0}, x_{1}, x_{2}, \cdots, x_{i}, x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{i}^{\prime}$) on real projective $2 i$-space $P_{2 i}(i>0)$, and define the involution ω_{i} by

$$
\omega_{i}\left(x_{0}, x_{1}, \cdots, x_{i}, x_{1}^{\prime}, \cdots, x_{i}^{\prime}\right)=\left(x_{0}, x_{1}, \cdots, x_{i},-x_{1}^{\prime}, \cdots,-x_{i}^{\prime}\right) .
$$

Then the product involution $\omega_{i} \times \omega_{j}$ on $P_{2 i} \times P_{2 j}$ maps the hypersurface $H_{2 i, 2 j}$ defined by the equation

$$
x_{0} y_{0}+x_{1} y_{1}+\cdots+x_{i} y_{i}+x_{1}^{\prime} y_{i}^{\prime}+\cdots+x_{i}^{\prime} y_{i}^{\prime}=0
$$

into itself, where for clarity we take coordinates ($y_{0}, y_{1}, \cdots, y_{j}$, $y_{i}^{\prime}, \cdots, y_{j}^{\prime}$) on $P_{2 j}$, and assume $i \leqq j$. The fixed-point dimension of $\omega_{i} \times \omega_{j} \mid H_{2 i, 2 j}$ is found to be $i+j-1$. The manifold $H_{2 i, 2 j}$ has dimension $2 i+2 j-1$ and its cobordism class $\left[H_{2 i, 2 j}\right]_{2}$ is indecomposable if and only if the binomial coefficient

$$
\binom{i+j}{i}
$$

is odd. We can always choose i and j satisfying this condition and $i+j=m$ whenever m is not a power of 2 . As an example for the first assertion of Theorem 1, we take the product of many copies of the 5dimensional example ($H_{2,4}, \omega_{1} \times \omega_{2} \mid H_{2,4}$), with possibly one copy of $\left(P_{2}, \omega_{1}\right)$.

