A NOTE ON THE MOMENTS OF THE NUMBER OF AXIS-CROSSINGS BY A STOCHASTIC PROCESS

BY M. R. LEADBETTER ${ }^{1}$
Communicated by M. Kac, September 21, 1966

1. Introduction. A general formula, for moments of arbitrary order of the number of upcrossings of a level u by a stationary normal process in unit time, was obtained by Cramér and Leadbetter [1], using a combination of techniques due to Kac [3], and Ylvisaker [6]. Ylvisaker [7] has weakened the conditions of this result slightly by a proof which depends on interesting applications of martingale convergence theory and which may be applied also to nonstationary normal situations. In this note we give a somewhat different direct procedure, under the weakened conditions, for the calculation of these moments. This procedure gives an alternative to that of Ylvisaker [7] for normal processes, without the use of martingale theory, and may be also applied to nonnormal situations in the same way as the discussion in [4] for the first moment.

We shall here give the "counting procedure" used to obtain the number of upcrossings, sketching the derivation, and indicating the extension to nonnormal cases. A detailed proof along these lines (for the stationary normal case) will be given elsewhere (Cramér and Leadbetter [2]).
2. A general result. We shall consider a process $x(t)$ possessing, a.s., continuous sample functions and, for a given integer k, absolutely continuous $2 k$-dimensional distributions with corresponding densities of the form $f_{t_{1} \ldots t_{2 k}}\left(x_{1} \cdots x_{2 k}\right)$. There will be no loss of generality in considering the number N of upcrossings of the zero level by $x(t)$ in $0 \leqq t \leqq 1$, which is a well-defined random variable (cf. [4]).

For $t=\left(t_{1} \cdots t_{k}\right)$ lying in the k-dimensional unit cube, let m_{r} denote the unique integer such that $m_{r} / 2^{n} \leqq t_{r}<\left(m_{r}+1\right) / 2^{n}$. Write $E_{n}(t)$ for the k-dimensional cube whose sides are the intervals $\left[m_{r} / 2^{n},\left(m_{r}+1\right) / 2^{n}\right)$. For $\epsilon>0$, let $A_{n_{e}}$ denote the set of all points t in the unit cube such that for all $s=\left(s_{1} \cdots s_{k}\right) \in E_{n}(t)$, we have $\left|s_{i}-s_{j}\right|>\epsilon$ whenever $i \neq j$, and write $\lambda_{n e}(t)$ for the characteristic function of the set $A_{n e}$. Finally let the random variable $\chi_{i, n}=1$ if $x\left(i / 2^{n}\right)<0<x\left[(i+1) / 2^{n}\right], \chi_{i, n}=0$ otherwise. The following lemma

[^0]
[^0]: ${ }^{1}$ This research was supported by the Army, Navy, Air Force and NASA under a contract administered by the Office of Naval Research. Reproduction in whole or in part is permitted for any purpose of the United States Government.

