COCOMMUTATIVE HOPF ALGEBRAS WITH ANTIPODE

BY MOSS E. SWEEDLER¹

Communicated by A. Mattuck, June 1, 1966

We shall describe the structure of a certain kind of Hopf algebra over an algebraically closed field k of characteristic p, namely those Hopf algebras whose coalgebra structure is commutative and which have an antipodal map $S: H \rightarrow H$. (See below for definitions.) Such a Hopf algebra turns out to be of the form kG # U, the smash product of a group algebra with a Hopf algebra whose coalgebra structure is "like" that of a universal enveloping algebra. If p=0 the second factor actually is a universal enveloping algebra.

For p > 0, we generalize the Birkhoff-Witt theorem by introducing the notion of divided powers. These also play a role in the theory of algebraic groups where certain sequences of divided powers correspond to one parameter subgroups. The divided powers appear in a "Galois Theory" for all finite normal field extensions.

The structure theory of Z_2 -graded coanticommutative Hopf algebras is similar, and mentioned below.

Lemma 1, Theorem 1, its generalization to the graded case, and Theorem 2 are unpublished results of B. Kostant, whose guidance we gratefully acknowledge.

1. *H* is a cocommutative Hopf algebra with multiplication *m*, augmentation ϵ and diagonal *d*.

DEFINITION. An element $g \in H$ is grouplike if $dg = g \otimes g$ and $g \neq 0$.

LEMMA 1. The set G of grouplike elements of H form a multiplicative semigroup whose elements are linearly independent in H. For each $g \in G$ there exists a unique maximal coalgebra $H^o \subset H$ whose only grouplike element is g. $H \cong \oplus H^o$ as a coalgebra, and $H^o H^h \subset H^{oh}$.

DEFINITION. $S: H \rightarrow H$ is an *antipode* if

 $m \circ (I \otimes S) \circ d = \epsilon = m \circ (S \otimes I) \circ d.$

THEOREM 1. If H has an antipode G is a group and $S(g) = g^{-1}$. If e is the identity of G, $H^o = gH^o = H^e g$, and $H \cong kG \# H^e$ as a Hopf algebra.

REMARK. Since $g^{-1}H^e g = H^e$, the elements of G act as Hopf algebra automorphisms of H^e and so we can form the smash product $kG \# H^e$.

 $^{^{1}}$ Part of the research described here was done while the author held an N.S.F. Graduate Fellowship.