THE GROTHENDIECK GROUP FOR STABLE HOMOTOPY IS FREE

BY PETER FREYD¹

Communicated by E. Spanier, July 5, 1966

Let H_n^m be the set of homotopy types of base-pointed finite complexes of dimension $\leq m$ and connectivity $\geq n$. We shall always assume that $2n \geq m$, in other words, that we are working in the "stable range".

 H_n^m is closed under the "wedge" operation $(X \lor Y)$ is obtained by identifying the base points in the disjoint union of X and Y). Chang [1] has classified the wedge indecomposables in the case $m \le n+3$ and has shown that a unique wedge decomposition theorem holds in H_n^{n+3} , $n \ge 3$.

PROPOSITION 1. Unique wedge decomposition fails in H_5^{10} . Indeed (H_5^{10}, \lor) fails to be a cancellation semigroup. The same pathology holds for any H_n^m , $m \ge n+5$, $2n \ge m$.

The easiest example: Let $\nu \in \pi_9(S^6)$ be a map of order 8. Let $\operatorname{Cone}(\nu)$ be its mapping cone. Then $S^6 \setminus \operatorname{Cone}(\nu) \simeq S^6 \setminus \operatorname{Cone}(3\nu)$ but $\operatorname{Cone}(\nu) \simeq \mathcal{S}^6 \setminus \operatorname{Cone}(3\nu)$. (The isomorphism uses only that 3 is prime to the order of ν , the nonisomorphism uses only that 3 is not congruent to $\pm 1 \mod$ the order of ν . ν could not be of order 2, 3, 4, or 6. Hence a similar example is avoided in the range covered by Chang.)

Let C_n^m be the cancellation semigroup obtained from (H_n^m, \vee) by defining $X \equiv Y$ if there exists Z such that $X \vee Z \simeq Y \vee Z$.

THEOREM 2. $X \equiv Y$ iff for the bouquet of spheres, B, with the same Betti numbers as X it is the case that $X \lor B \simeq Y \lor B$.

It follows that the inclusion $H_n^m \to H_n^{m+1}$ remains a monomorphism when we pass to $C_n^m \to C_n^{m+1}$. The suspension functor preserves wedges and hence we obtain a homomorphism from (H_n^m, \vee) to (H_{n+1}^{m+1}, \vee) . By Freudenthal's theorem $H_n^m \to H_{n+1}^{m+1}$ is an isomorphism. We obtain a family of monomorphisms $C_n^m \to C_{n'}^m$, $n \le n'$, $m \le m'$ the direct limit of which we'll call S. Each C_n^m is a sub-semigroup of S and it may be noted that each of the statements below about S and its ambient group specializes nicely to C_n^m and its ambient group.

 $^{^{\}rm 1}$ This research was supported in part by grant GP 4252 from the National Science Foundation.