ZEROS AND FACTORIZATIONS OF HOLOMORPHIC FUNCTIONS

BY WALTER RUDIN¹

Communicated by H. Helson, May 31, 1966

For $N=1, 2, 3, \cdots$ we let U^N denote the Cartesian product of N copies of the open unit disc U. I.e., U^N consists of all $z=(z_1, \cdots, z_N)$ in C^N (the space of N complex variables) with $|z_j| < 1$ for $j=1, \cdots, N$. We write U in place of U^1 . If $1 \le p < \infty$, $H^p(U^N)$ is the space of all holomorphic functions f in U^N for which

$$\sup (1/2\pi)^N \int_{-\pi}^{\pi} \cdots \int_{-\pi}^{\pi} |f(r_1e^{i\theta_1}, \cdots, r_Ne^{i\theta_N})|^p d\theta_1 \cdots d\theta_N < \infty,$$

the supremum being taken over all choices of r_1, \dots, r_N such that $0 \le r_i < 1$. The pth root of this supremum is defined to be $||f||_p$; this gives a Banach space norm. (The boundary behavior of these functions is discussed in Chapter XVII of [3].)

The class of all bounded holomorphic functions in U^N is denoted by $H^{\infty}(U^N)$.

The zero-set of a function f defined in U^N is the set of all $z \in U^N$ at which f(z) = 0.

It is well known that the zero-set of every $f \in H^p(U)$, for any p, is also the zero-set of some $g \in H^\infty(U)$. These zero-sets, in one variable, are completely characterized by the Blaschke condition $\sum (1-|\alpha_i|) < \infty$. For N > 1 a different phenomenon occurs:

THEOREM A. There exists a function f, not identically 0, such that (a) $f \in H^p(U^2)$ for all $p < \infty$, but

(b) if $g \in H^{\infty}(U^2)$ and if the zero-set of g contains the zero-set of f, then g is identically 0.

Let us call a subspace S of $H^p(U^N)$ invariant if multiplication by the coordinate functions z_1, \dots, z_N maps S into S. The closed invariant subspaces of $H^p(U)$ are known precisely: they are generated by inner functions [1, pp. 8, 25]. But if we consider the smallest closed invariant subspace of $H^p(U^2)$ which contains the function f of Theorem A we obtain the following:

COROLLARY. If $1 \le p < \infty$, there is a nontrivial closed invariant subspace of $H^p(U^2)$ which contains no bounded function (except 0).

¹ Supported by NSF Grant GP-3483.