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We consider the question of uniqueness and existence of piecewise 
linear structures on manifolds. 

I. Some relations between existence and uniqueness. By a mani
fold we will, in general, mean a topological manifold with or without 
boundary, compact or not. A PL manifold will be a topological mani
fold along with a given triangulation as a combinatorial manifold. A 
PL map will be the usual thing. If I f is a manifold, t(M) will denote 
its topological tangent bundle [ l ] . A tangential equivalence/: M—>M' 
will be a homotopy equivalence such that t(M) and f*t(M') are stably 
equivalent. An fe-cobordism, W, will be a compact manifold with 
dW = d0W\JdiW, where diW are the components of dW such that 
there exists a manifold M and a homotopy equivalence 

ƒ: (W, doW VJ dxW) -* (M X / , M X (0) U M X (1)). 

doW and d%W are said to be ft-cobordant. [X, Y] will denote the set of 
homotopy classes of maps. 

DEFINITION. The closed manifold M satisfies condition ofc if 
(a) dimM^k 
(b) M is n-connected if w>0, wi(M) is free abelian and finitely gen

erated if n = 0. 
Consider the following statements: 
A»—Every closed manifold satisfying o& is homeomorphic to a PL 

manifold. 
Bl—li M1, M2 satisfy a* and Af1, M2 are fc-cobordant then Ml is 

homeomorphic to M2. 
Cn—For each w-connected closed manifold M, there exists an / such 

that MXR1 is homeomorphic to a PL manifold. 

THEOREM A. Al*=*Bl+Cn. 

Now consider the statement: 
D\—If M1, M2 are simply connected PL manifolds satisfying a* 

and if M1, M2 are fc-cobordant as topological manifolds, then there 
exists a PL isomorphism between M1, M2. 

THEOREM B. Cn=*D%. 
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