THE HITTING CHARACTERISTICS OF A STRONG MARKOV PROCESS, WITH APPLICATIONS TO CONTINUOUS MARTINGALES IN Rⁿ

BY G. E. DENZEL

Communicated by M. Loeve, July 11, 1966

1. Introduction. M. Arbib showed in [1] that, essentially, on the real line a continuous path process with the same "hitting characteristics" as a diffusion was itself a diffusion (strong Markov process). His methods did not lend themselves to more general processes. The purpose of this note is to give a general characterization along this line, for right continuous, nonterminating, quasi-left continuous strong Markov processes with left limits, taking their values in a locally compact, noncompact second countable space E. We also give some interesting consequences concerning continuous martingales in \mathbb{R}^n . Full proofs of these and related results will appear elsewhere.

2. Hitting characteristics. Let \hat{X} be a process as above, described by measures \hat{P}^x ($x \in E$) on the space of paths (assume that the function $x \to \hat{P}^x(A)$ is Borel measurable for all Borel $A \subset E$, and that \hat{P}^x ($X_0 = x$) = 1). Let F_t be the σ -field generated by the path functions X_{\bullet} ($s \leq t$), and let F_R^+ be the σ -field of the stopping time R ($A \in F_R^+$ if $A \cap \{R < t\} \in F_t$ for all t). Another process X, described by a measure P on the same path space, will be said to have the same hitting characteristics as \hat{X} if

(H1)
$$E[T_{\overline{G}}c \circ \theta_R \mid F_R^{\dagger}] = \hat{E}^{\mathfrak{X}_R}[T_{\overline{G}}c]$$
 P-a.s.,

(H2)
$$E[I_B \circ X_{T_{\overline{G}}} \circ \theta_R | F_R^{\dagger}] = E^{\mathbf{X}_R}[I_B \circ X_{T_{\overline{G}}}]$$
 P-a.s.

for every stopping time R, Borel set $B \subset E$, and open set $G \subset E$ with compact closure $(T_{\overline{G}_n^o}$ is the first hitting time of the complement of the closure of G, and θ_R is the shift by R).

We write μ for the distribution of X_0 under P.

THEOREM 1. If X and \hat{X} have the same hitting characteristics as described above, and if there is a sequence of sets $G_n \nearrow E$, G_n open with compact closure, such that $x \rightarrow \hat{E}^x[T_{G_n}^c]$ is a bounded function on E, then $P = \hat{F}^{\mu}$ —i.e., X is a strong Markovprocess.

The existence of the sets G_n follows whenever \hat{X} is, say, a Feller