CENTRAL IDEMPOTENTS IN GROUP ALGEBRAS

BY DANIEL RIDER¹

Communicated by E. Hewitt, June 27, 1966

1. Introduction. The group algebra $L^1(G)$ of a group G consists of all complex functions f on G which have finite norm:

$$||f|| = \sum_{x \in G} |f(x)| < \infty.$$

Multiplication is given by convolution:

$$f*g(x) = \sum_{y \in G} f(xy^{-1})g(y).$$

A function $f \in L^1(G)$ is an *idempotent* if f * f = f; it is *central* if f(xy) = f(yx) for all $x, y \in G$. The *support* of f is the set of x for which $f(x) \neq 0$. The *support group* of f is the subgroup generated by the support of f.

The idempotents on abelian groups have been completely characterized [1], [2]; in particular they have finite support groups. Rudin [3] gives examples of noncentral idempotents on nonabelian groups which have infinite support and, a *fortiori*, infinite support groups.

The purpose of this paper is to answer affirmatively the question raised [3], [4] as to whether or not central idempotents have finite support groups.

THEOREM. The support group of a central idempotent is finite.

2. Proof of the theorem. Let f be a central idempotent on G. We can assume that G is the support group of f.

If G' is the commutator subgroup of G then it follows [4, Theorem 2.2] that G' has finite index in G. We will show that Z = the center of G also has finite index in G. But this implies that G' is finite (see, for example, [5, Theorem 15.1.13]) so that G must also be finite.

Let $S = \{x_1, x_2, \dots\}$ be the support of f. Since f is central and has finite norm, $\{gx_ig^{-1}: g \in G\}$ is finite for each x_i so that each x_i commutes with the elements of a subgroup of finite index. Let H_n be the normal subgroup generated by x_1, x_2, \dots, x_n and let Z_n be the elements

¹ This research was supported in part by Air Force Office of Scientific Research Grant A-AFOSR 335-63.