# EXTENSIONS OF COMMUTING ISOTONE FUNCTIONS ${ }^{1}$ 

BY FRANK W. OWENS<br>Communicated by D. Scott, June 6, 1966

The following problem was suggested as a research problem by Ralph De Marr in Bull. Amer. Math. Soc. 70 (1964), 501 :

Let $A$ be a nonempty subset of the unit interval $I$. Let $f_{0}, g_{0}: A \rightarrow A$ be isotone functions (i.e., $f_{0}(x) \leqq f_{0}(y)$ if $\left.x \leqq y\right)$ such that $f_{0}\left(g_{0}(x)\right)$ $=g_{0}\left(f_{0}(x)\right)$ for all $x \in A$. Can $f_{0}$ and $g_{0}$ be extended to isotone functions $f, g: I \rightarrow I$ which still commute?

We shall show that the answer is yes under certain additional assumptions, and give a counterexample to the problem in the above form.

Definition. $A \subset I$ is called left (right)-closed if any decreasing (increasing) sequence in $A$ has a limit in $A$. We write $A^{L}\left(A^{R}\right)$ for the left (right)-closure of $A$.

Remark. $A$ is closed iff $A$ is left-closed and right-closed, i.e., $\bar{A}=A^{L} \cup A^{R}$.

Theorem 1. If $A \cup\{\inf A\}$ is left-closed or $A \cup\{\sup A\}$ is rightclosed, there exist commuting isotone extensions.

Proof. We give the proof for the case $A \cup\{\inf A\}$ is left-closed. The case $A \cup\{\sup A\}$ is right-closed is similar. Extend $f_{0}$ and $g_{0}$ to $[0, \inf A] \cup A$ by defining them to be zero on $[0, \inf A]$ if $\inf A \notin A$, and to be their respective values at inf $A$ if inf $A \in A$. Next extend $f_{0}$ and $g_{0}$ to $B=[0, \inf A] \cup A \cup[\sup A, 1]$ by defining them to be one on $[\sup A, 1]$ if $\sup A \notin A$, and to be their respective values at $\sup A$ if $\sup A \in A$. Define $j: I \rightarrow B$ by $j(x)=\inf \{y \in B \mid x \leqq y\} . j$ is isotone on $I$, and $j \mid B=$ the identity function on $B$. The required extensions are $f=f_{0} j$ and $g=g_{0} j . f$ and $g$ are isotone since the composition of two isotone functions is isotone. $f_{0} j \mid A=f_{0}$ and $g_{0} j \mid A=g_{0} . f$ and $g$ commute on $I$ since $f_{0} j g_{0} j=f_{0} g_{0} j=g_{0} j_{0} j=g_{0} j f_{0} j$.

Note. The proof of the case $A \cup\{\sup A\}$ is right-closed is the same except that we define $j: I \rightarrow B$ by $j(x)=\sup \{y \in B \mid y \leqq x\}$.

Definition. Let $h: A \rightarrow A$ be isotone. Define $h^{L}: A^{L} \rightarrow A^{L}$ and $h^{R}: A^{R} \rightarrow A^{R}$ by

$$
\begin{aligned}
h^{L}(x) & =h(x), & & x \in A \\
& =\inf \{h(y) \mid x \leqq y \in A\}, & & x \in A^{L}-A
\end{aligned}
$$

[^0]
[^0]:    ${ }^{1}$ Partially supported by N. S. F. Grant GP-5855.

