EXTENSIONS OF COMMUTING ISOTONE FUNCTIONS¹

BY FRANK W. OWENS

Communicated by D. Scott, June 6, 1966

The following problem was suggested as a research problem by Ralph De Marr in Bull. Amer. Math. Soc. **70** (1964), 501:

Let A be a nonempty subset of the unit interval I. Let $f_0, g_0: A \to A$ be isotone functions (i.e., $f_0(x) \leq f_0(y)$ if $x \leq y$) such that $f_0(g_0(x)) = g_0(f_0(x))$ for all $x \in A$. Can f_0 and g_0 be extended to isotone functions $f, g: I \to I$ which still commute?

We shall show that the answer is yes under certain additional assumptions, and give a counterexample to the problem in the above form.

DEFINITION. $A \subset I$ is called left (right)-closed if any decreasing (increasing) sequence in A has a limit in A. We write $A^{L}(A^{R})$ for the left (right)-closure of A.

REMARK. A is closed iff A is left-closed and right-closed, i.e., $\overline{A} = A^L \cup A^R$.

THEOREM 1. If $A \cup \{\inf A\}$ is left-closed or $A \cup \{\sup A\}$ is rightclosed, there exist commuting isotone extensions.

PROOF. We give the proof for the case $A \cup \{\inf A\}$ is left-closed. The case $A \cup \{\sup A\}$ is right-closed is similar. Extend f_0 and g_0 to $[0, \inf A] \cup A$ by defining them to be zero on $[0, \inf A]$ if $\inf A \oplus A$, and to be their respective values at $\inf A$ if $\inf A \oplus A$. Next extend f_0 and g_0 to $B = [0, \inf A] \cup A \cup [\sup A, 1]$ by defining them to be one on $[\sup A, 1]$ if $\sup A \oplus A$, and to be their respective values at $\sup A$ if $\sup A \oplus A$. Define $j: I \to B$ by $j(x) = \inf\{y \oplus B | x \leq y\}$. j is isotone on I, and $j \mid B =$ the identity function on B. The required extensions are $f = f_0 j$ and $g = g_0 j$. f and g are isotone since the composition of two isotone functions is isotone. $f_0 j \mid A = f_0$ and $g_0 j \mid A = g_0$. f and g commute on I since $f_0 j g_0 j = f_0 g_0 j = g_0 j_0 j = g_0 j_0 j$.

Note. The proof of the case $A \cup \{\sup A\}$ is right-closed is the same except that we define $j: I \rightarrow B$ by $j(x) = \sup \{y \in B \mid y \leq x\}$.

DEFINITION. Let $h: A \rightarrow A$ be isotone. Define $h^L: A^L \rightarrow A^L$ and $h^R: A^R \rightarrow A^R$ by

$$\begin{aligned} h^L(x) &= h(x), & x \in A \\ &= \inf \left\{ h(y) \mid x \leq y \in A \right\}, & x \in A^L - A \end{aligned}$$

¹ Partially supported by N. S. F. Grant GP-5855.