THE NOETHERIAN DIFFERENT OF PROJECTIVE ORDERS¹

BY ROBERT M. FOSSUM²

Communicated by I. Reiner, May 4, 1966

1. Let K be a commutative ring and Λ a K-algebra (all rings will have identities and all modules will be unitary). Let $Z(\Lambda)$ be the center of Λ . Let $\phi_{\Lambda}: \Lambda \otimes_{\kappa} \Lambda^{0} \rightarrow \Lambda$ be given by $\phi_{\Lambda}(x \otimes y^{0}) = xy$. This is a homomorphism of left Λ^{e} -modules ($\Lambda^{e} = \Lambda \otimes_{\kappa} \Lambda^{0}$). The set

 $N(\Lambda/K) = \{a \in Z(\Lambda) \colon \exists f \in \operatorname{Hom}_{\Lambda^e}(\Lambda, \Lambda^e) \text{ with } \phi_{\Lambda}f = aI_{\Lambda}\}.$

is an ideal in $Z(\Lambda)$ called the *Noetherian different* of Λ over K.

In this note we announce an extension of a result of D. G. Higman [2] to projective central orders over integrally closed integral domains. Details will appear in a paper of the same title in the *Journal für die reine und angewandte Mathematik (Crelle)*.

It should be noted here that several authors have studied this ideal. See, for example, the papers listed in the bibliography.

2. Let K be an integrally closed integral domain with quotient field L. Let Λ be a K-order in a central simple L-algebra, Σ , which is projective as a K-module. Let $T: \Sigma \rightarrow L$ be the reduced trace from Σ to L. The hypothesis that K is integrally closed in L and that Λ is finitely generated as a K-module (it is an order) insures that $T(\Lambda) \subset K$. The complementary module, $C = C(\Lambda/K)$, and the Dedekind different, $D = D(\Lambda/K)$, are defined, as usual, as follows:

$$C = \{x \in \Sigma : T(x\Lambda) \subset K\},\$$
$$D = \{x \in \Sigma : Cx \subset \Lambda\}.$$

Define the K-homomorphism $t: C \rightarrow \operatorname{Hom}_{K}(\Lambda, K)$ by t(x)(y) = T(xy) for all $x \in C$, all $y \in \Lambda$.

PROPOSITION 1. t is an isomorphism and $t(D)(1) = T(D(\Lambda/K))$ = $N(\Lambda/K)$.

OUTLINE OF PROOF. It is shown first that each of the K-modules defined behaves nicely under localization at a maximal ideal of K. One

 $^{^{1}}$ This research was partially supported by the National Science Foundation at The University of Michigan. (G 24333)

² The author wishes to thank Professor J. E. McLaughlin for his invaluable guidance and criticism.