A COUNTEREXAMPLE ON RELATIVE REGULAR NEIGHBORHOODS

BY RALPH TINDELL¹

Communicated by J. Milnor, April 12, 1966

Hudson and Zeeman defined the concept of a relative regular neighborhood in [1], and gave an existence theorem and two uniqueness theorems; the purpose of this note is to show that the uniqueness theorems are false. A corrected version of these theorems has been announced by L. S. Husch and will appear later. For 3-manifolds, however, the corrected version is equivalent to the original.

For general terminology and definitions, see Zeeman [2]. Suppose K, L are subcomplexes of some complex J. We say that K is *link* collapsible on L if lk(A, Cl(K-L)) is collapsible for any simplex A of $Cl(K-L)\cap L$. If X and Y are compact polyhedra in a polyhedral manifold M, we say that X is link collapsible on Y if there is a triangulation K, L of X, Y such that K is link collapsible on L. For example, it is easy to see that a manifold is always link collapsible on any subpolyhedron of its boundary. Let X, Y, N be compact polyhedra in M. We say that N is a regular neighborhood of $X \mod Y$ in M if

(1) N is an m-manifold $(m = \dim M)$,

(2) N is a topological neighborhood of X - Y in M and

$$N \cap Y = N \cap Y = \operatorname{Cl}(X - Y) \cap Y,$$

(3) N collapses to Cl(X - Y).

The uniqueness theorems given by Hudson and Zeeman say, among other things, that any two regular neighborhoods of X mod Y in M are homeomorphic keeping Cl(X - Y) fixed, provided X is link collapsible on Y.

Let (B^3, B^1) be a knotted 3, 1 ball pair in E^3 and let $B^4 = a * B^3$ and $B^2 = a * B^1$ where $a = (0, 0, 0, 1) \in E^4$ and * denotes join. The 4, 2 ball pair (B^4, B^2) is locally knotted at the vertex a and hence is knotted. However it is easy to see that B^2 is unknotted in E^4 . Let $h: E^4 \rightarrow E^4$ be an onto piecewise linear homeomorphism such that $h(B^2) = \Delta$ is a 2-simplex. B^4 collapses cone-wise to B^2 , so that $h(B^4)$ collapses to $h(B^2) = \Delta$. Also $\dot{\Delta} \subset h(\dot{B}^4)$ and $\dot{\Delta} \subset h(\dot{B}^4)$, so that $h(B^4)$ is a regular neighborhood of Δ mod $\dot{\Delta}$ in E^4 . Let Σ be the 2-fold suspension of Δ in E^4 ; then Σ is a regular neighborhood of Δ mod $\dot{\Delta}$ in E^4 .

¹ The author was supported by the National Science Foundation, Grant GP 4006