ADAPTED INTEGRAL REPRESENTATIONS BY MEASURES ON CHOQUET BOUNDARIES

BY DIEDERICH HINRICHSEN

Communicated by V. Klee, March 31, 1966

1. Introduction. In recent years, the following abstract Cauchy-Weil Theorem has been established by different methods [8], [7], [4]:

Let X be a relatively compact domain in \mathbb{C}^n or more generally in a separable analytic space (Y, \mathfrak{O}) . Let H be the algebra of continuous complex valued functions on \overline{X} which are holomorphic in X. Then there exists a family $(\mu_x)_{x \in X}$ of complex measures on the Silov boundary S of \overline{X} with respect to H such that:

(i) $\mu_x(f) = f(x)$ for all $f \in H$, $x \in X$.

(ii) $x \rightarrow \mu_x(g)$ is holomorphic on X for all continuous complex valued functions g on S.

H. Bauer [1] has raised the problem whether it is possible to concentrate the measures μ_x on the Choquet boundary $X_e(H)$ of \overline{X} with respect to H. $X_e(H)$ is defined (for all separating vector spaces H of scalar valued functions on a compact space \overline{X}) as the set of all $x \in \overline{X}$ such that the unit point measure ϵ_x at x is the only positive Radon measure μ of total mass 1 on \overline{X} satisfying $\mu(h) = h(x)$ for all $h \in H$ [6]. If \overline{X} is metrizable and H is a Banach algebra containing the constants $X_e(H)$ coincides with the minimal boundary of H as defined in [3]. One can prove that for an *algebra* H the following statements are equivalent: (a) $x \in X_e(H)$; (b) if $\mu(h) = h(x)$ for all $h \in H$, then $\mu(\{x\}) \neq 0$ for all complex measures μ on \overline{X} ; (c) ϵ_x is orthogonal to all complex measures μ on \overline{X} with $\mu(h) = 0$ for all $h \in H$.

The purpose of the present paper is to give a solution of Bauer's problem by treating even the following more abstract situation:

Let X be a relatively compact open subset of a Hausdorff space, $\mathfrak{C}(\overline{X}, K)$ the algebra of all continuous K-valued functions on \overline{X} $(K=\mathbb{C} \text{ or } K=\mathbb{R})$ and H a separating linear subspace of $\mathfrak{C}(\overline{X}, K)$ with $1 \in H$. Suppose E to be a vector space of K-valued functions on X which contains the restrictions $\operatorname{res}_X h$ of all $h \in H$ to X—under which conditions is there a family $(\nu_x)_{x \in X}$ of (K-valued) Radon measures concentrated on the Choquet boundary $X_e = X_e(H)$ such that:

(i) (v_x) is a family of *H*-representing measures, i.e. $v_x(h) = h(x)$ for all $h \in H$, $x \in X$;

(ii) (ν_x) is *E*-adapted, i.e. $x \rightarrow \nu_x(g)$ is in *E* whenever $g \in \mathfrak{C}(\overline{X}_e, K)$? Important suggestions for our solution were given by L. Bungart [4].