THE K THEORY OF THE PROJECTIVE UNITARY GROUPS

BY T. PETRIE

Communicated by E. Lyle, May 9, 1966

Let $U = U(p^r)$ be the unitary group on complex p^r space, p an odd prime. Let $S^1 \subset U$ be the set of matrices λI where λ is a complex number with $|\lambda| = 1$ and I is the identity matrix. Then S^1 is the center of U and $PU(p^r) = PU = U/S^1$.

We determine the complex K^* groups for the spaces PU by first determining the mod qK^* groups of these spaces [2] then using the mod p Bockstein spectral sequence to obtain the p torsion. $K^*[PU(p^r)]$ and $H^*[PU(p^r)]$ have no q torsion for $q \neq p$ and the mod p Bockstein spectral sequences for these two groups are isomorphic; thus,

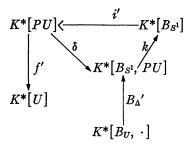
THEOREM 5.5. $H^*[PU(p^r), Z]$ and $K^*[PU(p^r)]$ are isomorphic as abelian groups.

The details of these proofs will be published elsewhere. The outline follows:

Let B_{S^1} and $B_U = B_U(p^r)$ be the classifying spaces of the indicated groups. There are the following maps

$$U \xrightarrow{f} PU \xrightarrow{i} B_{S^1} \xrightarrow{B_{\Delta}} B_U.$$

Either *i* or B_{Δ} may be considered fibrations. We use the following diagram



(1)

Let $\rho_q: K^*[, Z] \to K^*[, Z_q]$ be the reduction [2] and $\beta_K: K[, Z_q] \to K[, Z]$ the Bockstein. $\exists \sigma_1, \sigma_2, \cdots, \sigma_{p^r} \in K^*[B_U, \cdot] \ni K^*[B_U] = Z[[\sigma_1, \cdots, \sigma_{p^r}]], H^*[B_U] = Z[\bar{\sigma}_1, \cdots, \bar{\sigma}_{p^r}], K^*[U] = E[s\sigma_1, \cdots, s\sigma_{p^r}], K^*[B_{S^1}] = Z[[y]], H^*[B_{S^1}] = Z[\bar{y}]. \rho_p$ is onto for these groups and it will be convenient to use x for $\rho_p(x)$ when possible. $kB_{\Delta}'(\sigma_i) = C_{p^r,i}\bar{y}^i$.