ON THE MAXIMAL RING OF QUOTIENTS OF C(X)

BY ANTHONY W. HAGER

Communicated by E. Hewitt, April 11, 1966

1. Let Q(X) denote the maximal ring of quotients (in the sense of Johnson [4] and Utumi [5]) of the ring C(X) of continuous realvalued functions on the completely regular Hausdorff space X. This ring has been studied by Fine, Gillman, and Lambek [1] and realized by them as the direct limit of the subrings C(V), V a dense open subset of X (i.e., the union of these C(V)'s, modulo the obvious equivalence relation). From this representation of Q(X), it follows that if X and Y have homeomorphic dense open subsets, then Q(X) and Q(Y)are isomorphic. The full converse to this is false (see below). In this note a proof of the following is described.

THEOREM 1. Let X and Y be separable metric spaces. If Q(X) and Q(Y) are isomorphic, then X and Y have homeomorphic dense open subsets.

In particular, the spaces \mathbb{R}^n , $n=1, 2, \cdots (\mathbb{R}=$ the reals) have pairwise nonisomorphic Q's, thus settling a question¹ raised in [1]. That $Q(\mathbb{R})$ is not isomorphic to $Q(\mathbb{R}^n)$, for n > 1, was shown by F. Rothberger and J. Fortin. (See [2], and [1, p. 16].)

The main purpose of this note is to present a fairly simple solution to this question, and therefore the possible generalizations of Theorem 1 will not be discussed here. These generalizations, and related questions, will be treated in detail in a later paper.

The proof of Theorem 1 will now be described.

2. Homomorphisms of C(Y) into C(X) are well understood [3, Chapter 10]. If $\tau: X \to Y$ is continuous, $\phi(f) = f \circ \tau$ defines a homomorphism $\phi: C(Y) \to C(X)$. Conversely, if Y is realcompact, and $\phi: C(Y) \to C(X)$ is a homomorphism with $\phi(1) = 1$, then ϕ is induced by a continuous function in this manner.

Now, let W_0 be a dense open subset of X, and let $\tau: W_0 \to Y$ be continuous and additionally satisfy: for each dense open subset V of $Y, \tau^{-1}[V]$ is dense in X. Then $\phi(f) = f \circ \tau$ defines a homomorphism $\phi: Q(Y) \to Q(X)$. Evidently, ϕ satisfies

(*) for each dense open subset V of Y, there is a dense open subset W of X such that φ[C(V)]⊂C(W).

¹ The author is indebted to Professor Nathan J.Fine for communicating this question, and for many valuable conversations concerning it.