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1. Let QiX) denote the maximal ring of quotients (in the sense of 
Johnson [4] and Utumi [5]) of the ring C(X) of continuous real-
valued functions on the completely regular Hausdorff space X, This 
ring has been studied by Fine, Gillman, and Lambek [ l] and realized 
by them as the direct limit of the subrings C(V), Va, dense open sub
set of X (i.e., the union of these C(F)'s, modulo the obvious equiva
lence relation). From this representation of Q(X), it follows that if X 
and F have homeomorphic dense open subsets, then Q(X) and Q(Y) 
are isomorphic. The full converse to this is false (see below). In this 
note a proof of the following is described. 

THEOREM 1. Let X and Y be separable metric spaces. If Q(X) and 
Q(Y) are isomorphic, then X and Y have homeomorphic dense open sub
sets. 

In particular, the spaces Rn, w = l, 2, • • • (i£ = the reals) have 
pairwise nonisomorphic Q's, thus settling a question1 raised in [ l ] . 
Tha t Q(R) is not isomorphic to <2(i£w), f ° r w > l , was shown by F. 
Rothberger and J. Fortin. (See [2], and [l, p. 16].) 

The main purpose of this note is to present a fairly simple solution 
to this question, and therefore the possible generalizations of Theo
rem 1 will not be discussed here. These generalizations, and related 
questions, will be treated in detail in a later paper. 

The proof of Theorem 1 will now be described. 

2. Homomorphisms of C(Y) into C(X) are well understood [3, 
Chapter 10]. If r : X—»F is continuous, <fi(f)=f o r defines a homo
morphism </>: C{Y)—*C(X). Conversely, if Y is realcompact, and 
</>: C(Y)—*C(X) is a homomorphism with </>(l) = 1, then <j> is induced 
by a continuous function in this manner. 

Now, let Wo be a dense open subset of X, and let r : W0—»F be 
continuous and additionally satisfy : for each dense open subset V of 
F, r - 1 [ F ] is dense in X. Then <j>(f) =ƒ o r defines a homomorphism 
4>: Q{Y)-*Q(X). Evidently, 4> satisfies 

(*) for each dense open subset V of F, there is a dense open sub
set W of X such that 0[C(V)] CC(W). 

1 The author is indebted to Professor Nathan J.Fine for communicating this ques
tion, and for many valuable conversations concerning it. 
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