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We consider second order two point boundary value problems of 
the form: 

(2) aQy(a) — aty(a) = a, \ a0\ + | «i | ^ 0; 

(3) b0y(b)+biy'(b) = ft | Jo | + | Ji | * 0. 

Our basic result is the 

THEOREM. Letf(t, u, u') have continuous derivatives which satisfy: 

\df(t,u(t),u'(t)) df(t, u(f)9 u'(t)) 
(4) _ ^ _ A Z L _ 1 ^ > o, 

du du' 
g M, 

for some M è O , a^t^b and all continuously differentiable functions 
u(t). Let the constants a^ bi satisfy: 

(5) at ^ 0, bi Ê; 0, i = 0, 1; a0 + b0 > 0. 

Tfeew a unique solution of (1), (2), (3) exists f or each (a, /3). 

PROOF. We sketch the proof. The initial value problem 

u" = ƒ(/, u, u'), a S t S b\ 

(6) a0u(a) — aiu'(a) = a\ 
a\Co — a$ci = 1; co^(a) — Ciu' 

has the unique solution u(s\ t). The problem (1), (2), (3) has as many 
solutions as there are real roots, s* of 

(j>(s) = bou(s; b) + b\Uf(s\ b) = ft 

Since w(s; t) is continuously differentiable with respect to 5 the de
rivative %(t)^du(s\ t)/ds satisfies the variational problem [ l ] , 

*" « PM + S(o«, 

1 This work was supported under Contract DA-31-124-ARO-D-360 with the U. S. 
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