EXISTENCE THEORY FOR TWO POINT BOUNDARY VALUE PROBLEMS ${ }^{1}$

BY HERBERT B. KELLER

Communicated by H. A. Antosiewicz, March 18, 1966

We consider second order two point boundary value problems of the form:

$$
\begin{align*}
& y^{\prime \prime}=f\left(t, y, y^{\prime}\right), \quad a \leqq t \leqq b \tag{1}\\
& a_{0} y(a)-a_{1} y^{\prime}(a)=\alpha, \quad\left|a_{0}\right|+\left|a_{1}\right| \neq 0 \tag{2}\\
& b_{0} y(b)+b_{1} y^{\prime}(b)=\beta, \quad\left|b_{0}\right|+\left|b_{1}\right| \neq 0 \tag{3}
\end{align*}
$$

Our basic result is the
Theorem. Let $f\left(t, u, u^{\prime}\right)$ have continuous derivatives which satisfy:

$$
\begin{equation*}
\frac{\partial f\left(t, u(t), u^{\prime}(t)\right)}{\partial u}>0, \quad\left|\frac{\partial f\left(t, u(t), u^{\prime}(t)\right)}{\partial u^{\prime}}\right| \leqq M \tag{4}
\end{equation*}
$$

for some $M \geqq 0, a \leqq t \leqq b$ and all continuously differentiable functions $u(t)$. Let the constants a_{i}, b_{i} satisfy:

$$
\begin{equation*}
a_{i} \geqq 0, \quad b_{i} \geqq 0, \quad i=0,1 ; \quad a_{0}+b_{0}>0 . \tag{5}
\end{equation*}
$$

Then a unique solution of (1), (2), (3) exists for each (α, β).
Proof. We sketch the proof. The initial value problem

$$
\left.\begin{array}{l}
u^{\prime \prime}=f\left(t, u, u^{\prime}\right), \quad a \leqq t \leqq b \\
a_{0} u(a)-a_{1} u^{\prime}(a)=\alpha \tag{6}\\
c_{0} u(a)-c_{1} u^{\prime}(a)=s
\end{array}\right\}, \quad a_{1} c_{0}-a_{0} c_{1}=1 ;
$$

has the unique solution $u(s ; t)$. The problem (1), (2), (3) has as many solutions as there are real roots, s^{*} of

$$
\phi(s) \equiv b_{0} u(s ; b)+b_{1} u^{\prime}(s ; b)=\beta
$$

Since $u(s ; t)$ is continuously differentiable with respect to s the derivative $\xi(t) \equiv \partial u(s ; t) / \partial s$ satisfies the variational problem [1],

$$
\begin{gathered}
\xi^{\prime \prime}=p(t) \xi^{\prime}+q(t) \xi \\
\xi(a)=a_{1}, \quad \xi^{\prime}(a)=a_{0}
\end{gathered}
$$

[^0]
[^0]: ${ }^{1}$ This work was supported under Contract DA-31-124-ARO-D-360 with the U.S. Army Research Office (Durham).

