TWO THEOREMS IN GEOMETRIC MEASURE THEORY

BY HERBERT FEDERER1

Communicated by J. Wermer, February 8, 1966

The following two propositions give some new information about the structure of differentiable maps. We use the symbols R^m and H^s to designate m dimensional Euclidean space and s dimensional Hausdorff measure, respectively.

THEOREM 1. If $m > r \ge 0$ and $k \ge 1$ are integers, Y is a normed real vectorspace, $f: \mathbb{R}^m \to Y$ is k times continuously differentiable, and

$$S = R^m \cap \{x: \dim \operatorname{im} Df(x) \leq r\},\$$

then

$$H^{r+(m-r)/k}[f(S)] = 0.$$

THEOREM 2. If $f: R^m \rightarrow R^n$ is Lipschitzian, r is an integer, $0 \le r \le m$, and

$$T = R^n \cap \{y: H^{m-r}(f^{-1}\{y\}) > 0\},\$$

then H^r almost all of T can be covered by a countable family of r dimensional submanifolds of class 1 of R^n .

The first theorem optimally sharpens the results of [4], where the history of the problem is discussed; its proof uses a refinement of the key lemma in [3], which dealt with the case r=0. The second theorem is related to the coarea formulae obtained in [2] and [1]. Proofs of both theorems will appear in the author's book Geometric measure theory.

REFERENCES

- 1. J. E. Brothers, Integral geometry in homogeneous spaces, Trans. Amer. Math. Soc. (to appear).
- 2. Herbert Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), 418-491.
- 3. A. P. Morse, The behavior of a function on its critical set, Ann. of Math. 40 (1939), 62-70.
- 4. Arthur Sard, Hausdorff measure of critical images on Banach manifolds, Amer. J. Math. 87 (1965), 158-174.

Brown University

¹ This work was supported in part by a research grant from the National Science Foundation.