AN ASYMPTOTIC FORMULA FOR THE EIGENVALUES OF THE LAPLACIAN OPERATOR IN AN UNBOUNDED DOMAIN

BY COLIN CLARK¹

Communicated by F. Browder, February 10, 1966

F. Rellich [5] and, more generally, A. M. Molcanov [3] have shown that the problem

(1)
$$\frac{\frac{1}{2}\Delta^2 u(x) + \lambda u(x) = 0, \quad x \in \Omega}{u(x) = 0, \quad x \in \partial\Omega}$$

has a discrete spectrum (and consequently a complete orthonormal system of eigenfunctions in $\mathcal{L}_2(\Omega)$) provided that Ω is a "quasibounded" domain in E_n . A domain Ω is said to be quasi-bounded if it is either bounded or satisfies

$$\lim_{x\to\infty,x\in\Omega}\operatorname{dist}(x,\,\partial\Omega)\,=\,0.$$

(See [1] for a proof of Molcanov's result, based on a generalization of the Kondrachoff embedding theorem for the Sobolev spaces $H_0^m(\Omega)$.) The problem of determining the asymptotic behavior of the eigenvalues of (1) has remained open (cf. [2, p. 233]).

In the present note we consider the above problem from the point of view of random processes, as described in detail for the case of a bounded domain, as well as for the case of the operator $-\frac{1}{2}\Delta^2 + V(x)$ (with $V(x) \rightarrow +\infty$ as $|x| \rightarrow \infty$) on an unbounded domain, in the papers of D. Ray [4] and M. Rosenblatt [6]. We will show that if Ω satisfies the following condition

(2)
$$m(\Omega \cap [a < |x| < a+1]) = O(a^{-\beta})$$

for some $\beta > \frac{1}{2}$, then simple modifications of Ray's arguments suffice to prove discreteness of the spectrum, as well as to obtain an asymptotic formula for the eigenvalues.

We take Ray's paper [4] as a starting point. Thus (assuming a cone condition for Ω , as described in Theorem 1 below) we already have a Green's function K(x, y, t) corresponding to the equation

¹ Research supported in part by the United States Air Force Office of Scientific Research, grant number AF-AFOSR-379-65.