ON MALLIAVIN'S COUNTEREXAMPLE TO SPECTRAL SYNTHESIS

BY IAN RICHARDS¹

Communicated by N. Levinson, March 11, 1966

Malliavin's disproof of spectral synthesis breaks into two main parts: the first uses a certain "operational calculus," while the second involves a construction. Here we will be concerned only with the second part. The required construction is complicated, and several versions of it have been given [2], [3], [5]. In this note we describe an approach which appears to be somewhat simpler.

It should be mentioned that Varopoulos [6], [7] has recently given a completely different disproof of spectral synthesis, using tensor products of Banach algebras. However Malliavin's original counterexample, although difficult to construct, gives a very powerful result: for instance it shows that spectral synthesis fails even for principal ideals.

(Malliavin's results imply the existence of an $f \in A(\Gamma)$ such that f, f^2, f^3, \cdots all generate different closed ideals in $A(\Gamma)$. The hypothesis of spectral synthesis asserts that any two closed ideals in $A(\Gamma)$ having the same "zero set" coincide—see below for definitions.)

DEFINITIONS. G is an infinite discrete abelian group; Γ is its dual, which is compact and not discrete. For $f \in L^1(G)$ the Fourier transform \hat{f} is defined by $\hat{f}(\gamma) = \sum_G f(p)(-p, \gamma)dp$. For $f \in L^1(\Gamma)$ we set $\hat{f}(p) = \int_{\Gamma} f(\gamma)(p, \gamma)d\gamma$, so that the Fourier inversion theorem holds: $\hat{f} = f. A(\Gamma)$ denotes the algebra of Fourier transforms $\hat{f}(\gamma), f \in L^1(G)$. It is endowed with the norm, $||\hat{f}|| = \sum_{i=1}^{n} |f(p)|$, so that $A(\Gamma)$ is just an isomorphic and isometric copy of $L^1(G)$. The zero set of an ideal $I \subseteq A(\Gamma)$ is the set of points $\gamma_0 \in \Gamma$ such that $f(\gamma_0) = 0$ for all $f \in I$. For $g \in A(\Gamma), \eta(g)$ denotes the L^{∞} norm of the sequence $\hat{g}: \eta(g) \equiv \sup_{i=1}^{n} |\hat{g}(p)|$, $p \in G$.

Malliavin showed (cf. [3], [4], [5]) that spectral synthesis fails in $L^{1}(G)$ provided there exists a real valued function $f \in A(\Gamma)$ such that, for $-\infty < u < \infty$

(A)
$$\eta(e^{iuf}) = O(|u|^{-n}), \text{ all } n \ge 0.$$

THEOREM. There exists a real valued function $f \in A(\Gamma)$ which satisfies (A).

PROOF. To simplify the discussion, we will assume that G is the group of integers (Γ is the circle group). The modifications needed for dealing with the general case are similar to those in Rudin [5,

¹ This work was partially supported by N.S.F. Grant GP4033.