DERIVATIONS OF LIE ALGEBRAS¹

BY SHIGEAKI TÔGÔ

Communicated by S. Smale, March 24, 1966

- 1. It is known as a theorem of E. Schenkman and N. Jacobson that every nilpotent Lie algebra over a field of arbitrary characteristic has an outer derivation (see [1]). In connection with this theorem, we know the following two types of results, one showing a wider class of Lie algebras which have outer derivations and the other showing the existence of outer derivations in proper ideals of the derivation algebras. Namely, G. Leger [2] has shown that, if a Lie algebra over a field of characteristic 0 whose center is \neq (0) has no outer derivations, it is not solvable and its radical is nilpotent. On the other hand, T. Satô [3] has shown that every nilpotent Lie algebra over a field of characteristic 0 has an outer derivation in the radical of its derivation algebra. We shall generalize and sharpen these results and give more detailed results on outer derivations of Lie algebras over a field of arbitrary characteristic.
 - 2. We denote by Z(H) the center of a Lie algebra H. Then we have

THEOREM 1. Every Lie algebra L over a field Φ of arbitrary characteristic such that $L \neq L^2$ and $Z(L) \neq (0)$ has an outer derivation. More precisely, such a Lie algebra L has a nilpotent outer derivation D such that $D^2 = 0$, unless L is either 1-dimensional or the direct sum of a 1-dimensional ideal and of an ideal L_1 such that $L_1 = L_1^2$ and $Z(L_1) = (0)$.

In the case where L is not abelian and has no abelian direct summands, take a subspace M of L of codimension 1 containing L^2 . Then M is an ideal of L and $[L, Z(M)] \neq Z(M)$. Choose an element e of L such that $L = \Phi e + M$ and an element z of Z(M) which is not in [L, Z(M)]. Then the endomorphism D of L defined in such a way that De = z and DM = (0) is an outer derivation of L such that $D^2 = 0$.

COROLLARY. Let L be a Lie algebra over a field of characteristic 0 such that $Z(L) \neq (0)$ and R be the radical of L. If L has no outer derivations, L is not solvable and R = [L, R].

There is another class of nonsolvable Lie algebras which have outer derivations. Namely:

¹ Research supported in part by the National Science Foundation, grant number GP-3990.