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If /x is a complex measure (countably additive on a <r-field of sub
sets of some space), it is obvious that there is a measurable set E 
such that 
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where ||ju|| denotes the total variation of 11. In fact a set E can be 
found for which 
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We shall give a simple proof of this. If fx is a vector valued measure 
with values in Rn (with the usual Euclidean norm) we shall show by 
a suitable modification of our argument that there is a set E with 
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Asymptotically this is ||ju||/(27ra)1/2, which is much better than the 
obvious ||/x||/2«. 

THEOREM 1. Let JJL be a complex valued measure of total variation 1. 
Then there is a measurable set E such that \ fx(E) | ^ 1/T. 

PROOF. Consider first the special case where fx is a Borel measure 
on the unit circle of the complex plane (which we identify with the 
real line (mod 2x)), and is such that for every measurable set E, 
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where | /A| (E) denotes the total variation of ju on the set E. Then 
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