THE SOLUTION BY ITERATION OF NONLINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES¹

BY F. E. BROWDER AND W. V. PETRYSHYN

Communicated January 11, 1966

Introduction. Let X be a Banach space, T a (possibly) nonlinear mapping of X into X. We are concerned with the solvability of the equation

$$(1) u - Tu = f$$

for a given element f of X and its relation to the properties of the Picard iterates for the Equation (1), i.e. the sequence $\{x_n\}$ where

(2)
$$x_{n+1} = Tx_n + f, x_0 \text{ given.}$$

In a preceding note on the linear case [8], we established the following facts for linear T:

- (a) If X is reflexive and T is asymptotically bounded (i.e. $||T^n|| \le M$ for some constant M and all $n \ge 1$), then the Equation (1) has a solution u for a given f if and only if for any specific x_0 , the sequence of Picard iterates $\{x_n\}$ starting with x_0 is bounded in X (see [2]).
- (b) For a general Banach space X, if T is asymptotically convergent (i.e. $T^n x$ converges strongly in X for each x in X as $n \to +\infty$), the sequence of Picard iterates $\{x_n\}$ for a given x_0 converges if and only if the equation (1) has a solution.
- (c) For a general Banach space X and T asymptotically convergent, if an infinite subsequence of the sequence $\{x_n\}$ converges, then the whole sequence converges to a solution of Equation (1).

Our object in the present note is to give some partial extensions of these results to a general class of nonlinear operators T, and to indicate some interesting examples of the application of these nonlinear results.

THEOREM 1. Let T be a nonexpansive nonlinear mapping of X into X, (i.e. $||Tx-Ty|| \le ||x-y||$ for all x and y in X), and suppose that X is uniformly convex. Then the Equation (1) has a solution u for a given f in X if and only if for any specific x_0 in X, the sequence of Picard iterates $\{x_n\}$ starting at x_0 is bounded in X.

PROOF OF THEOREM 1. Let T_f be the mapping of X into X given by $T_f(u) = Tu + f$. Then u is a solution of Equation (1) if and only if

¹ The preparation of this paper was partially supported by NSF Grant GP-3552.