THE SOLUTION BY ITERATION OF NONLINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES ${ }^{1}$

BY F. E. BROWDER AND W. V. PETRYSHYN

Communicated January 11, 1966
Introduction. Let X be a Banach space, T a (possibly) nonlinear mapping of X into X. We are concerned with the solvability of the equation

$$
\begin{equation*}
u-T u=f \tag{1}
\end{equation*}
$$

for a given element f of X and its relation to the properties of the Picard iterates for the Equation (1), i.e. the sequence $\left\{x_{n}\right\}$ where

$$
\begin{equation*}
x_{n+1}=T x_{n}+f, \quad x_{0} \text { given. } \tag{2}
\end{equation*}
$$

In a preceding note on the linear case [8], we established the following facts for linear T :
(a) If X is reflexive and T is asymptotically bounded (i.e. $\left\|T^{n}\right\| \leqq M$ for some constant M and all $n \geqq 1$), then the Equation (1) has a solution u for a given f if and only if for any specific x_{0}, the sequence of Picard iterates $\left\{x_{n}\right\}$ starting with x_{0} is bounded in X (see [2]).
(b) For a general Banach space X, if T is asymptotically convergent (i.e. $T^{n} x$ converges strongly in X for each x in X as $n \rightarrow+\infty$), the sequence of Picard iterates $\left\{x_{n}\right\}$ for a given x_{0} converges if and only if the equation (1) has a solution.
(c) For a general Banach space X and T asymptotically convergent, if an infinite subsequence of the sequence $\left\{x_{n}\right\}$ converges, then the whole sequence converges to a solution of Equation (1).

Our object in the present note is to give some partial extensions of these results to a general class of nonlinear operators T, and to indicate some interesting examples of the application of these nonlinear results.

Theorem 1. Let T be a nonexpansive nonlinear mapping of X into X, (i.e. $\|T x-T y\| \leqq\|x-y\|$ for all x and y in X), and suppose that X is uniformly convex. Then the Equation (1) has a solution u for a given f in X if and only if for any specific x_{0} in X, the sequence of Picard iterates $\left\{x_{n}\right\}$ starting at x_{0} is bounded in X.

Proof of Theorem 1. Let T_{f} be the mapping of X into X given by $T_{f}(u)=T u+f$. Then u is a solution of Equation (1) if and only if

[^0]
[^0]: ${ }^{1}$ The preparation of this paper was partially supported by NSF Grant GP-3552.

