Hence the C^{*}-algebra $\pi_{\tilde{\mathrm{x}}}(A)$ and so A have a type III-factor $*$-representation.

This completes the proof.

References

1. J. W. Calkin, Two sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941), 839-873.
2. J. Dixmier, Les algebres d'operateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.
3. J. Glimm, Type I C*-algebras, Ann. of Math. 73 (1961), 572-612.
4. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219-255.
5. S. Sakai, On topological properties of W*-algebras, Proc. Japan Acad. 33 (1957), 439-444.
6. ——, The theory of W^{*}-algebras, Lecture notes, Yale University, 1962.
7. ——., On a problem of Calkin, Amer. J. Math. (to appear).
8. J. Schwartz, Two finite, non-hyperfinite, nonisomorphic factors, Comm. Pure Appl. Math. 16 (1963), 19-26.
9. -, Non-isomorphism of a pair of factors of type III, Comm. Pure Appl. Math. 16 (1963), 111-120.

University of Pennsylvania

SOME UNSYMMETRIC COMBINATORIAL NUMBERS

BY ANDREW SOBCZYK
Communicated by V. Klee, January 26, 1966

By an n-configuration we shall mean an abstract set of n elements, together with the set of all unordered pairs of distinct elements from the set. It is convenient also to use quasi-geometrical terminology such as vertex for element, edge or side for a pair (2-tuple), triangle as well as triple (3-tuple) for a 3-subconfiguration, and so on.

The Ramsey number $N(p, q, 2)$ (see [3, pp. 38-43], or [2, pp. 61$65]$), for two kinds h, v of pairs (or two "colors of edges"), is the smallest integer such that if $n \geqq N(p, q, 2)$, then any n-configuration is sure to contain either an $h p$-tuple (a p-tuple all of whose edges are h) or a $v q$-tuple. Call a p-tuple all of whose edges are alike (h or v) a like p-tuple. We introduce, and partially determine the values of, new analogous combinatorial numbers $K(p, q, 2), M(p, q, 2)$, and $V(p, q, 2)$.

Definitions. The number $K(p, q, 2)$ is the smallest integer such that if $n \geqq K(p, q, 2)$, then for each vertex, the configuration is sure to contain either a like p-tuple containing the vertex, or a like q-tuple not containing the vertex. For three kinds r, g, v of edges, $M(p, q, 2)$

