WIENER-HOPF TYPE PROBLEMS FOR ELLIPTIC SYSTEMS OF SINGULAR INTEGRAL EQUATIONS ${ }^{1}$

BY ELIAHU SHAMIR

Communicated by F. Browder, February 2, 1966

The problem treated in this paper is roughly the inversion of elliptic systems of singular integral equations in a half-space of R^{n}. Ellipticity means that the system is invertible over the whole of R^{n}, in our case explicitly. We first introduce notation and some spaces of (vector-valued) distributions.

Let (x, y) denote points in R^{n} with $x \in R^{n-1}, y \in R . R_{+}^{n}\left[R_{-}^{n}\right]$ is the half-space $y \geqq 0[y \leqq 0] . H^{s, p}$ is the space of distributions u for which

$$
\|u\|_{s, p}=\left\|F^{-1}\left(1+|\xi|^{2}+\eta^{2}\right)^{s / 2} F u\right\|_{L^{p}}<\infty .
$$

Here $(F u)(\xi, \eta)=\int u(x, y) e^{i(x \cdot \xi+y \cdot \eta)} d x d y$, with (ξ, η) dual to (x, y). We assume $1<p<\infty . H_{-}^{s, p}$ is the subspace of elements supported in R_{-}^{n}. $H^{s, p}\left(R_{+}^{n}\right)$ is the quotient $H^{s, p} / H_{-}^{s, p}$ (it is a space of distributions on $\stackrel{\circ}{R}_{+}^{n}$, the open half-space). Y_{+}denotes the canonical map onto the quotient and $\left\|Y_{+} u\right\|_{s, p}$ is the quotient norm. $H_{+}^{s, p}, H^{s, p}\left(R_{-}^{n}\right)$ and Y_{-} are similarly defined. For $s=0$, we can identify $H_{ \pm}^{0, p}=L_{ \pm}^{p}$ with $L^{p}\left(R_{ \pm}^{n}\right)$, and $Y_{ \pm}$with multiplication by the characteristic function of $R_{ \pm}^{n}$. The definitions above extend to vector valued functions com-ponent-wise.

Let $M(\xi, \eta)$ be an $N \times N$ matrix of functions, positively homogeneous of degree $0, C^{l+1}$ on $|\xi|^{2}+\eta^{2}=1$ where $l>n / 2$. The operator $\boldsymbol{M}=F^{-1} M(\xi, \eta) F$ (whose symbol is $M(\xi, \eta)$) is bounded in $H^{s, p}$, invertible (elliptic) if $\operatorname{det}[M(\xi, \eta)] \neq 0$ for $(\xi, \eta) \neq 0$.

Theorem A. The operator $\tilde{M}: u \rightarrow\left(Y_{-} u, Y_{+} M u\right)$ has a closed range in $H^{s, p}\left(R_{-}^{n}\right) \times H^{s, p}\left(R_{+}^{n}\right)$ for every s except at most N exceptional values of $s(\bmod 1)$. There exists $k^{\prime} \geqq k^{\prime \prime}$ such that for $s=k+\sigma$ nonexceptional

$$
\begin{gathered}
\|u\|_{s, p} \leqq C\left[\left\|Y_{-} u\right\|_{s, p}+\left\|Y_{+} M u\right\|_{s, p}\right], \quad \text { all } u \in H^{s, p} ; k \geqq k^{\prime}, \\
\sum_{ \pm}\left\|V_{ \pm}\right\|_{-s, p^{\prime}} \leqq C\left\|V_{-}+M V_{+}\right\|_{-s, p^{\prime}}, \quad \text { all } V_{ \pm} \in H_{ \pm}^{-s, p^{\prime}} k \leqq k^{\prime \prime} \\
k^{\prime \prime}=k^{\prime} \text { in the scalar case. }
\end{gathered}
$$

The first estimate means that \tilde{M} is $1-1$ and has a closed range. The second ("dual") estimate assures that the range of \tilde{M} is full. Thus as $s \rightarrow+\infty$ the operator \tilde{M} becomes left invertible, as $s \rightarrow-\infty$ it becomes right invertible.

[^0]
[^0]: ${ }^{1}$ This work was supported in part by grant GP-3940 from the National Science Foundation.

