IDEALS WITH SMALL AUTOMORPHISMS

BY WALTER RUDIN¹

Communicated November 29, 1965

In [1], Forelli proves the following: If G_1 and G_2 are locally compact Abelian groups, if J is a closed ideal in the group algebra $L^1(G_1)$, and if Ψ is a homomorphism of J into the measure algebra $M(G_2)$ with $||\Psi|| = 1$, then Ψ is induced by an affine map of a coset in Γ_2 into Γ_1 . (See [1] for a more detailed statement. For notation and terminology, see [1] or [2]; Γ_i denotes the dual group of G_i ; the circle group will be denoted by T.) As Forelli points out in [1], the assumption $||\Psi|| = 1$ cannot be entirely discarded.

Actually, the assumption $||\Psi|| = 1$ cannot even be replaced by $||\Psi|| < 1+\epsilon$, no matter how small $\epsilon > 0$ is, even if "affine" is replaced by "piecewise affine" in the conclusion, and even if $G_1 = G_2 = T$ and Ψ is assumed to be one-to-one.

Since the integer group Z admits only countably many piecewise affine maps, the preceding statement is a consequence of the theorem below. By way of contrast, it may be of interest to mention that if Ψ is a homomorphism of all of $L^1(G_1)$ into $M(G_2)$ and if $||\Psi|| > 1$, then $||\Psi|| \ge \sqrt{5/2}$ [2, p. 88].

THEOREM. Suppose $0 < \epsilon < 1$. Let E be a set of positive integers λ_k such that $\lambda_1 = 1$ and

(1)
$$\sum_{k=1}^{\infty} \frac{\lambda_k}{\lambda_{k+1}} < \frac{\epsilon}{6\pi} \cdot$$

Let J be the set of all $f \in L^1(T)$ whose nth Fourier coefficient $\hat{f}(n)$ is 0 for all n not in E. Then J is a closed ideal in $L^1(T)$, with continuum many automorphisms, and every automorphism A of J (other than the identity) satisfies the inequality

$$(2) 1 < ||A|| < 1 + \epsilon.$$

We shall sketch the proof.

Each A is induced by a permutation α of E. The gaps in E show that no affine map (other than the identity) carries E onto E. Thus ||A|| > 1 if $A \neq I$.

We write e(t) in place of $e^{2\pi i t}$.

Let α be any permutation of Z^+ (the positive integers), let

¹ Supported by NSF Grant GP-3483.