A COMPLETE EXTREMAL DISTANCE PROBLEM ON OPEN RIEMANN SURFACES¹

BY A. MARDEN AND B. RODIN

Communicated by L. Bers, November 10, 1965

Partition the boundary contours of a compact bordered Riemann surface \overline{W} into four disjoint sets α_0 , α , β , γ with α_0 and α nonempty. Let F consist of all arcs in $\overline{W} - \gamma$ which have initial point in α_0 and endpoint in α . Let F^* consist of all cycles in $\overline{W} - \beta$ which separate α_0 from α . Determine the harmonic function u in \overline{W} by the boundary conditions u = 0 on α_0 , u = 1 on α , $\partial u/\partial n = 0$ along γ , and u is constant on each contour β_i in β with the constant so chosen that $\int_{\beta_i} du^* = 0$. Then $\lambda(F) = \lambda^{-1}(F^*) = ||du||^{-2}$ where $\lambda(\cdot)$ denotes the extremal length and $||\cdot||^2$ denotes the Dirichlet norm. This result is implicit in the fundamental work of Ahlfors-Beurling [1]. Observe that if \overline{W} is planar and α_0 , α are single contours then $\exp 2\pi (u + iu^*)/||du||^2$ is a conformal map of Int \overline{W} into $1 < |z| < \exp 2\pi/||du||^2$, the components of β going onto circular slits and the components in γ onto radial slits.

The purpose of this note is to announce a complete generalization of the above result which is valid for arbitrary open Riemann surfaces. As a consequence of our work we obtain a new class of conformal mappings of plane regions onto "extremal" slit annuli analogous to the situation described above. These results and their proofs will be published in a forthcoming paper [2].

We begin with an open Riemann surface W and partition its Kerékjártó-Stoilöw ideal boundary into four disjoint sets α_0 , α , β , γ with α_0 and α nonempty. For technical reasons we assume that α_0 , α , $\alpha_0 \cup \alpha \cup \beta$ are closed subsets of the Kerékjártó-Stoilöw compactification \hat{W} of W. Let \mathfrak{F} be the family of arcs in $\hat{W} - \gamma$ with initial points in α_0 and end points in α . Let \mathfrak{F}^* consist of all suitably orientated τ such that τ is a countable union of closed curves in $\hat{W} - \alpha_0$ $-\alpha - \beta$, all limit points of τ are contained in γ , and no component of $\hat{W} - \gamma - \tau$ contains points in both α_0 and α . There is a natural definition for $\lambda(\mathfrak{F})$, $\lambda(\mathfrak{F}^*)$ obtained by replacing each curve $\tau \subset \hat{W}$ by the curve $\tau \cap W$. An *HD*-function u on W is constructed which generalizes the u defined above for compact bordered surfaces. The actual definition of u uses a noncompact exhaustion of W "in the direction

¹ This work was supported in part by the National Science Foundation under grant GP 2280 at the University of Minnesota and GP 4106 at the University of California, San Diego.