LEFT ALMOST PERIODICITY DOES NOT IMPLY RIGHT ALMOST PERIODICITY

BY T. S. WU ${ }^{1,2}$
Communicated by G. A. Hedlund, August 16, 1965

Let G be a topological group. A real valued continuous function f, defined on G, is left \{right $\}$ almost periodic iff for any $\epsilon>0$, there is a left $\{$ right $\}$ syndetic subset ${ }^{3} A$ of G such that $|f(a x)-f(x)|<\epsilon$ for all $a \in A, x \in G$. In this note, we shall show that a left almost periodic function is not necessarily right almost periodic even if the group G is a Lie group. This answers a problem in [3]. For the notions of almost periodic functions, we refer to [1], [4]. $C(X)$ denotes the set of all continuous real valued functions on the topological space X.

Definition 1. Let N be a closed subgroup of a topological group G. We say that N splits in G if N is normal in G and there is a closed subgroup C such that
(i) $N \cap C=\{e\}, e$ the identity of G.
(ii) $G=C N$.
(iii) The mapping $(c, n) \rightarrow c n$ is a homeomorphism of $C X N$ onto G. In this case G is said to be the semidirect product of N and C [5], [6].

Proposition 1. Assume G is a semidirect product of a compact normal subgroup N and a subgroup C. Let $f \in C(N)$. Define F on G by $F(c n)=f(n)$. Then $F \in C(G)$, and F is left almost periodic.

Proof. It is clear that F is well defined and belongs to $C(G)$. Let $\epsilon>0,|F(c n)-F(n)|=|f(n)-f(n)|=0<\epsilon$. Since $C N=G, C$ is left syndetic. Thus F is left almost periodic. In fact, F is left periodic in the sense of [4].

Proposition 2. In addition to the assumption and notations of Proposition 1, we assume that there are elements $n \in N, n \neq e$, and a net $\left\{g_{\nu}\right\}$ in G such that $g_{\nu} n g_{\nu}^{-1} \rightarrow e$. If $f \in C(N)$, with $f(n) \neq f(e)$, then F is not right almost periodic.

Proof.

$$
\left|F\left(g_{\nu} n g^{-1} g_{\nu}\right)-F\left(g_{\nu}\right)\right|=\left|F\left(g_{\nu} n\right)-F\left(g_{\nu} e\right)\right|=|f(n)-f(e)|=a \neq 0
$$

[^0]
[^0]: ${ }^{1}$ I am grateful to Professor R. W. Bagley for his encouragement during my preparation of this work.
 ${ }^{2}$ This work was supported partially under the contract NGR 10-007-005.
 ${ }^{8}$ A subset S of G is left \{right \} syndetic [4] iff there exists a compact subset K of G so that $G=S K\{G=K S\}$.

