ON NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS

BY BUI AN TON¹

Communicated by F. Browder, October 26, 1965

The purpose of this note is to prove the solvability of a nonlinear elliptic equation with general boundary conditions. Nonlinear variational elliptic boundary-value problems have been considered by Browder in [4], [5] and by Visik.

In \$1, we give the notations. In \$2, we prove the solvability of the nonlinear elliptic equation with linear boundary conditions and in \$3, we consider the case when we have a nonlinear boundary condition.

The writer is indebted to Professor Felix Browder for his criticisms and suggestions.

1. Let G be a bounded, open subset of E^n with a C^{∞} imbedding mapping of its boundary Γ into E^n . Let A be a linear elliptic differential operator of order 2m with coefficients defined on G; and $a(x, \xi)$ its characteristic form. Let B_1, \dots, B_m be m linear differential operators of orders r_j with coefficients defined on Γ and let $b_j(x, \xi)$ be their characteristic forms.

We set:

$$D_{j} = i^{-1}\partial/\partial x_{j}; \quad j = 1, \cdots, n,$$

$$D^{\alpha} = \prod_{j=1}^{n} D_{j}^{\alpha_{j}}; \qquad |\alpha| = \sum_{j=1}^{n} \alpha_{j}, \quad \alpha_{j} \ge 0.$$

The elliptic boundary-problem $\{A; B_j; j=1, \dots, m\}$ on G is assumed to be uniformly regular in the sense of Browder [3].

We now state our main assumption on $\{A; B_i\}$:

ASSUMPTION 1. Let $\{A; B_j; j=1, \cdots, m\}$ be a uniformly regularly elliptic boundary problem on G. We assume that:

(i) $a(x, \xi)/|a(x, \xi)| \neq -1$ for x in G, ξ in \mathbb{R}^n .

(ii) if $c_{rj}(x, T, t) = \int_C \lambda^{r-1} b_j(x, \lambda N_x + T) [a(x, \lambda N_x + T) + t]^{-1} d\lambda$ where C is a closed, Jordan rectifiable curve in the λ upper half plane containing all the m roots of $a(x, \lambda N_x + T) + t$ and N_x is the unit outer normal to Γ at x; T is any tangent vector to Γ at x; then there exists a positive constant c independent of x, t such that:

 $\left| \operatorname{Det}(c_{rj}(x, T, t)) \right| \geq c \quad \text{for } t \geq t_0 > 0$

¹ Postdoctoral fellow of the National Research Council of Canada.