GROTHENDIECK TOPOLOGIES OVER COMPLETE LOCAL RINGS

BY STEPHEN S. SHATZ ${ }^{1}$

Communicated by A. Rosenberg, September 30, 1965

1. Introduction. J. Tate [8] has introduced a theory of cohomological dimension for fields using the étale Grothendieck (=Galois) cohomology. In recent work, M. Artin has extended these methods to produce a dimension theory for noetherian preschemes. On the other hand, the author [5] has used the flat Grothendieck cohomology over a field to study certain duality questions (see also [7], [9] for the étale case); so it is natural to ask whether there exists a dimension theory based on the flat cohomology. We shall show that the answer is, in general, no. Full proofs will appear in [6].
2. Terminology. A Grothendieck topology is a pair consisting of a category Cat T and a set $\operatorname{Cov} T$ of families of morphisms of Cat T. They are subjected to the axioms:
(1) If ϕ is an isomorphism, $\{\phi\} \in \operatorname{Cov} T$.
(2) If $\left\{U_{i} \rightarrow U\right\} \in \operatorname{Cov} T$ and $\left\{V_{i j} \rightarrow U_{i}\right\} \in \operatorname{Cov} T$, for all i, then $\left\{V_{i j} \rightarrow U\right\} \in \operatorname{Cov} T$.
(3) If $\left\{U_{i} \rightarrow U\right\} \in \operatorname{Cov} T$ and $V \rightarrow U$ is arbitrary, then $U_{i} \times{ }_{U} V$ exists for each i, and $\left\{U_{i} \times_{U} V \rightarrow V\right\} \in \operatorname{Cov} T$.
A presheaf (of abelian groups) on T is a contravariant functor from Cat T to the category of abelian groups, while a sheaf, F, is a presheaf which satisfies the axiom

$$
\begin{align*}
& \text { For all }\left\{U_{i} \rightarrow U\right\} \in \operatorname{Cov} T \text {, the natural sequence } \\
& F(U) \rightarrow \prod_{i} F\left(U_{i}\right) \rightrightarrows \prod_{i, j} F\left(U_{i} \times_{U} U_{j}\right) \tag{S}
\end{align*}
$$

is exact (i.e., $F(U)$ is mapped bijectively onto the set of all $x \in \prod_{i} F\left(U_{i}\right)$ whose images by the two maps shown agree in $\prod_{i, j} F\left(U_{i} \times_{U} U_{j}\right)$.) Roughly speaking, all that is done in Godement's book [2] for classical sheaf theory may be done in this general setting [1]. If X is a prescheme [3, Vol. I, p. 97], we let Cat T be the category of all preschemes Y which are separated, finitely presented, flat, and quasifinite over X [3, Vol. I, p. 135, p. 144; Vol. IV, p. 5; Vol. II, p. 115]. $\operatorname{Cov} T$ consists of arbitrary families of flat morphisms whose disjoint sum is faithfully flat [3, Vol. IV, Part 2, p. 9]. It is known that these

[^0]
[^0]: ${ }^{1}$ Supported in part by the National Science Foundation.

