MEASURES OF AXIAL SYMMETRY FOR OVALS ${ }^{1}$

BY BROTHER B. ABEL deVALCOURT

Communicated by V. Klee, October 20, 1965
B. Grünbaum [2] has made a thorough report of the known results on measures of central symmetry for convex sets. We seek here to measure the degree of axial symmetry (axiality) of an oval K (a compact convex set in E^{2} with interior points).

Definition. A measure of axiality is a real-valued function f defined on the class of ovals such that
(i) $0 \leqq f(K) \leqq 1$;
(ii) $f(K)=1$ if and only if K has an axis of symmetry (is axial);
(iii) f is similarity-invariant.

Let ϕ be a direction in the plane, $k(\phi)$ a line normal to the direction $\phi, b_{\phi}(K)$ the breadth of K in the direction $\phi, \mathrm{Cv}(S)$ the convex hull of the set $S, \lambda_{\phi}(K)$ the "load curve" of K in the direction ϕ, (i.e., the set of midpoints of all chords of K in the direction ϕ), [K] the area of $K,|K|$ the perimeter of K, and $K_{k(\phi)}$ the Steiner symmetrand of K with respect to the line $k(\phi)$.

The following measures of axiality are studied, and lower bounds are determined for them on the classes of arbitrary ovals (K), centrally symmetric ovals $\left(K_{c}\right)$, and ovals of constant breadth $\left(K_{1}\right)$:

$$
\begin{aligned}
& f_{1}(K)=\max _{\phi}\left\{1-b_{\phi}\left[\operatorname{Cv}\left(\lambda_{\phi}(K)\right] / b_{\phi}(K)\right\}\right. \\
& f_{2}(K)=\max _{\phi} \max _{k}(1 / b) \int_{0}^{b} r(\phi, k, y) d y
\end{aligned}
$$

where $b=b_{\phi+\pi / 2}(K), k=k(\phi)$, and $r(\phi, k, y)$ is the ratio (taken $\leqq 1$) of the lengths of the two parts into which a chord $\gamma=\gamma(y)$ of K in the direction ϕ is divided by $k(r=0$ if $\gamma \cap k=\varnothing)$,

$$
\begin{aligned}
& f_{3}(K)=\max _{K^{\prime}}\left\{\left[K^{\prime}\right] /[K]: K^{\prime} \text { is axial, and } K^{\prime} \subseteq K\right\} \\
& f_{4}(K)=\max _{K^{\prime}}\left\{[K] /\left[K^{\prime \prime}\right]: K^{\prime \prime} \text { is axial, and } K \subseteq K^{\prime \prime}\right\} \\
& f_{5}(K)=\max _{K^{\prime}}\left\{\left|K^{\prime}\right| /|K|: K^{\prime} \text { is axial, and } K^{\prime} \subseteq K\right\} \\
& f_{6}(K)=\max _{K^{\prime}}\left\{|K| /\left|K^{\prime \prime}\right|: K^{\prime \prime} \text { is axial, and } K \subseteq K^{\prime \prime}\right\},
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ This work was supported by the Air Force Office of Scientific Research Grant AF-AFOSR 661-64 and forms part of the author's dissertation written at the University of Minnesota under Professor H. W. Guggenheimer.

