EXTREMAL LENGTH AND REMOVABLE BOUNDARIES OF RIEMANN SURFACES

BY BURTON RODIN¹

Communicated by Maurice Heins, September 30, 1965

1. Introduction. Given a Riemann surface R let KD denote the space of harmonic functions u on R with finite Dirichlet norm ||du|| and such that *du is semiexact, i.e., $\int_c * du = 0$ for all dividing cycles c. Then O_{KD} denotes the class of Riemann surfaces R for which every function in KD is constant. Clearly $O_{HD} \subset O_{KD} \subset O_{AD}$ and for planar surfaces $O_{KD} = O_{AD}$. Under various names, this class O_{KD} has been studied by many authors (see, for example, Royden [4], Sario [5]).

The concept of the extremal length $\lambda(\mathfrak{F})$ of a family \mathfrak{F} of curves on a Riemann surface R can be extended to the case that \mathfrak{F} is a family of curves on the Kerékjártó-Stoilöw compactification \hat{R} of R merely by eliminating the ideal points from each curve. Let α_0 , α_1 be compact subsets of R. Define $\hat{\mathfrak{F}}$ to be the family of all arcs on \hat{R} with initial point in α_0 and endpoint in α_1 . Define \mathfrak{F} to be the subfamily of $\hat{\mathfrak{F}}$ consisting of all arcs in R. We consider two notions for the extremal distance between α_0 and α_1 , viz., define

$$\lambda(\alpha_0, \alpha_1) = \lambda(\mathfrak{F}), \qquad \hat{\lambda}(\alpha_0, \alpha_1) = \lambda(\hat{\mathfrak{F}}).$$

The aim of this note is to announce the following

THEOREM. A necessary and sufficient condition that $\lambda(\alpha_0, \alpha_1) = \hat{\lambda}(\alpha_0, \alpha_1)$ for all compact subsets α_0 , α_1 of R is that $R \in O_{KD}$.

Our Theorem is reminiscent of the already classical result of Ahlfors-Beurling [1]:

A plane point set E is an AD-null set if and only if the removal of E does not change extremal distances.

The relationship between these results will be discussed in §3 below.

2. Sketch of the proof. The complete proof will appear in a forthcoming book [3]. The main steps in proving the necessity of the extremal distance condition are the following. (i) To construct functions u, a on R such that $\lambda(\alpha_0, \alpha_1) = ||du||^{-2}$ and $\lambda(\alpha_0, \alpha_1) = ||du||^{-2}$, (ii) to show that $R \in O_{KD}$ implies u = a. (Actually, these steps are applied to each component of $R - \alpha_0 - \alpha_1$, rather than R itself.)

¹ This work was supported in part by the National Science Foundation under grant GP 4106 at the University of California, San Diego.