EXTREMAL LENGTH AND REMOVABLE BOUNDARIES OF RIEMANN SURFACES

BY BURTON RODIN ${ }^{1}$
Communicated by Maurice Heins, September 30, 1965

1. Introduction. Given a Riemann surface R let $K D$ denote the space of harmonic functions u on R with finite Dirichlet norm $\|d u\|$ and such that $* d u$ is semiexact, i.e., $\int_{c} * d u=0$ for all dividing cycles c. Then $O_{K D}$ denotes the class of Riemann surfaces R for which every function in $K D$ is constant. Clearly $O_{H D} \subset O_{K D} \subset O_{A D}$ and for planar surfaces $O_{K D}=O_{A D}$. Under various names, this class $O_{K D}$ has been studied by many authors (see, for example, Royden [4], Sario [5]).

The concept of the extremal length $\lambda(\mathfrak{F})$ of a family \mathfrak{F} of curves on a Riemann surface R can be extended to the case that \mathcal{F} is a family of curves on the Kerékjártó-Stoilöw compactification \hat{R} of R merely by eliminating the ideal points from each curve. Let α_{0}, α_{1} be compact subsets of R. Define $\hat{\mathcal{F}}$ to be the family of all arcs on \hat{R} with initial point in α_{0} and endpoint in α_{1}. Define \mathcal{F} to be the subfamily of \hat{F} consisting of all arcs in R. We consider two notions for the extremal distance between α_{0} and α_{1}, viz., define

$$
\lambda\left(\alpha_{0}, \alpha_{1}\right)=\lambda(\mathfrak{F}), \quad \hat{\lambda}\left(\alpha_{0}, \alpha_{1}\right)=\lambda(\hat{\mathscr{F}}) .
$$

The aim of this note is to announce the following
Theorem. A necessary and sufficient condition that $\lambda\left(\alpha_{0}, \alpha_{1}\right)=\bar{\lambda}\left(\alpha_{0}, \alpha_{1}\right)$ for all compact subsets α_{0}, α_{1} of R is that $R \in O_{K D}$.

Our Theorem is reminiscent of the already classical result of Ahl-fors-Beurling [1]:

A plane point set E is an $A D$-null set if and only if the removal of E does not change extremal distances.

The relationship between these results will be discussed in $\S 3$ below.
2. Sketch of the proof. The complete proof will appear in a forthcoming book [3]. The main steps in proving the necessity of the extremal distance condition are the following. (i) To construct functions u, \hat{u} on R such that $\lambda\left(\alpha_{0}, \alpha_{1}\right)=\|d u\|^{-2}$ and $\hat{\lambda}\left(\alpha_{0}, \alpha_{1}\right)=\|d \hat{u}\|^{-2}$, (ii) to show that $R \in O_{K D}$ implies $u=\hat{u}$. (Actually, these steps are applied to each component of $R-\alpha_{0}-\alpha_{1}$, rather than R itself.)

[^0]
[^0]: ${ }^{1}$ This work was supported in part by the National Science Foundation under grant GP 4106 at the University of California, San Diego.

