SPIN COBORDISM

BY D. W. ANDERSON, E. H. BROWN, JR., AND F. P. PETERSON¹

Communicated by I. Singer, October 20, 1965

1. Statements of results. Ω_*^{Spin} , the Spin cobordism ring, has been studied by many, e.g. Wall [9, p. 294], Milnor [5] and [6], Novikov [7], and P. G. Anderson [3]. In this announcement we describe the additive structure of Ω_*^{Spin} , much of the multiplicative structure, characteristic numbers which determine Ω_*^{Spin} , and other properties.

We first state some technical results. Let α denote the mod 2 Steenrod algebra, and let $Q_0 = Sq^1$ and $Q_1 = Sq^3 + Sq^2Sq^1$. If $a_1, a_2, \dots, a_r \in \alpha$, $\alpha(a_1, a_2, \dots, a_r)$ will denote the left ideal generated by $\{a_i\}$. All cohomology groups will have Z_2 coefficients unless otherwise stated. Let $p: BO\langle n \rangle \rightarrow BO$ be the fibre space such that $\pi_i(BO\langle n \rangle) = 0$ for i < n and $p_*: \pi_i(BO\langle n \rangle) \approx \pi_i(BO)$ for $i \ge n$. The following theorem is due to R. Stong [8].

THEOREM 1.1. There is an element $\alpha_n \in H^n(BO(n))$ such that the map of α into $\overline{H}^*(BO(n))$ given by $a \rightarrow a\alpha_n$ defines an isomorphism in dimensions less than 2n between $\alpha/\alpha(Sq^1, Sq^2)$ and $\overline{H}^*(BO(n))$ for $n \equiv 0 \pmod{8}$ and between $\alpha/\alpha(Sq^3)$ and $\overline{H}^*(BO(n))$ for $n \equiv 2 \pmod{8}$.

Let $\xi \in \overline{K}O^0(X)(X)$ be of filtration n [4], that is, ξ is trivial on the n-1 skeleton of X. Then there is a map $f_{\xi}: X \to BO\langle n \rangle$ such that pf_{ξ} is ξ . Let $[\xi] = \{f_{\xi}^*(\alpha_n)\} \subset H^n(X)$ for all f_{ξ} such that $pf_{\xi} = \xi$.

Let $J = (j_1, \dots, j_k)$ be a sequence of integers with $j_i > 1$ and $k \ge 0$. Let $P_J = P_{j_1} \dots P_{j_k} \in H^{4n(J)}(B \operatorname{Spin})$, where $n(J) = \sum j_i$ and P_j is the *j*th Pontrjagin class. In [2], certain classes $\pi^i \in KO^0(BSO)$ were defined which behave very much like Pontrjagin classes. Under the map $B \operatorname{Spin} \to BSO$, π^i maps into a class which we also denote $\pi^i \in KO^0(B \operatorname{Spin})$. Let $\pi^J = \pi^{j_1} \dots \pi^{j_k} \in KO^0(B \operatorname{Spin})$. Our main result from KO-theory is the following theorem.

THEOREM 1.2. The filtration of π^J is 4n(J) if n(J) is even, and is 4n(J)-2 if n(J) is odd. Furthermore, if n(J) is even, there exists $X_J \in H^{4n(J)}(B \operatorname{Spin})$ such that $X_J \in [\pi^J]$ and $X_J \equiv P_J \mod \operatorname{Im} Q_0 Q_1$, and if n(J) is odd, there exists $Y_J \in H^{4n(J)-2}(B \operatorname{Spin})$ such that $Y_J \in [\pi^J]$ and $Sq^2 Y_J \equiv P_J \mod \operatorname{Im} Q_0 Q_1$.

 $^{^1}$ The first named author was partially supported by the U.S.A.F. as a N.A.S. N.R.C. fellow and by the U.S. Army Research Office, the second named author by the N.S.F. and the third named author by the N.S.F. and the U.S. Army Research Office.