MANIFOLDS WITH $\pi_{1}=Z$

BY WILLIAM BROWDER ${ }^{1}$
Communicated by J. W. Milnor, October 11, 1965.

In this note we announce some results extending results of S. P. Novikov ([6] and [7]), the author [2], and C. T. C. Wall [8]. In the above papers it is shown how to characterize the homotopy type of 1 -connected smooth closed manifolds of dimension $n \geqq 5, n \neq 2 \bmod 4$, and how to reduce the diffeomorphy classification of such manifolds to homotopy theory, with similar results for bounded manifolds in [8]. We show how to adapt these techniques to manifolds with $\pi_{1}=Z$ and get analogous results. By studying the "mapping torus" using these results one may obtain results on existence and pseudo-isotopy of diffeomorphisms, (see [3]).

One has for example the situation of a closed smooth manifold M^{n} and a map $f: M^{n} \rightarrow X$, such that the normal bundle ν of M in S^{n+k} is induced by f from a bundle ξ over X. One does surgery on M with respect to the map f, i.e. if W is the cobordism determined by the surgery, then f extends to a map $F: W \rightarrow X$ such that the normal bundle of W in $S^{n+k} \times I$ is induced from ξ by F. In case M is simply connected many conditions facilitate the surgery, such as the Whitney embedding theorem, and the Hurewicz theorem, so that, with appropriate hypothesis on X and ξ, it is often possible to do surgery to create a manifold homotopy equivalent to X. The case of a nonzero fundamental group poses many problems, but if $\pi_{1} M=Z$, one can reduce the situation to the simply connected case by using extra geometrical structure. The idea is to consider a 1 -connected manifold U^{n} with two 1-connected boundary components, $\partial U=A_{0} \cup A_{1}$, with $f: A_{0} \rightarrow A_{1}$ a diffeomorphism, and consider the identification space M^{n} of U with $a \in A_{0}$ identified to $f(a) \in A_{1}$. Then M^{n} is closed and connected with $\pi_{1} M=Z$, and it can be shown using surgery that any smooth connected M^{n} with $\pi_{1} M=Z, n \geqq 5$ can be represented this way. One may then study U and A_{0}, A_{1} using the techniques of surgery on 1-connected manifolds and then use this to obtain information about M.

In §1 we deal with closed manifolds and in §2, with manifolds with boundary. In $\S 2$ we examine in particular the case of homology circles, which gives certain results on the complements of higher dimensional knots (e.g. Corollaries 2.3 and 2.4).

[^0]
[^0]: ${ }^{1}$ Research supported in part by NSF grant GP2425 at Princeton University.

