RESEARCH PROBLEMS

3. Richard Bellman: Singular differential and the Lagrange expansion.

Consider the differential equation $u=g(t)+\epsilon h(u, d u / d t)$, where h is analytic in its arguments, and suppose that we iterate, $u=g$ $+\epsilon h\left(g, g^{\prime}\right)+\epsilon^{2} h_{1}+\cdots$, a formal power series in ϵ. Is there an extension of the Lagrange expansion theorem which permits us to obtain the coefficients in a reasonably simple fashion? (Received October 4, 1965.)
4. Richard Bellman: Lagrange expansion for functionals.

The partial differential equation $u_{t}=u u_{x}, u(x, 0)=g(x)$, which has the solution $u=g(x+t u)$ can be used to derive the Lagrange expansion of the solution of $v=c+\epsilon h(v)$ as a power series in ϵ. Can one find an analogous solution of the functional partial differential equation $u_{t}=u(\delta u / \delta f), u(f, 0)=g(f)$, where $g(f)$ is a given functional of f, and $\delta u / \delta f$ denotes the Gateaux derivative of the functional $u(f, t)$, which can be used to find a Lagrange expansion of the solution of $v=c(x)$ $+\epsilon h(v)$, where h is a functional of v ? (Received October 4, 1965.)
5. J. M. Gandhi: The number of representations of a number as a sum of ten squares.

Let $\gamma_{2 \varepsilon}(n)$ denote the number of representations of a number n as a sum of $2 s$ squares. We shall not discuss representations of n as a sum of an odd number of squares. As usual we call a function $f(n)$ multiplicative if it satisfies the condition

$$
f(m n)=f(m) f(n), \quad(m, n)=1
$$

It is observed that $\gamma_{2 s}(n)$ is not multiplicative for all values of $2 s$. For example $\gamma_{6}(n), \gamma_{24}(n)$, etc. are not multiplicative. But $\gamma_{2 s}(n)$ is multiplicative for some values of s. For example it was shown by Gupta and Vaidhya [2] that $\gamma_{2}(n) / 4$ is multiplicative. Since $\sigma(n)$, the sum of the divisors of n and $\sigma_{0}(n)$, sum of the odd divisors of n are multiplicative and

$$
\begin{align*}
\gamma_{4}(2 n+1) & =8 \sigma(2 n+1), \\
\gamma_{4}(2 n) & =24 \sigma_{0}(n), \tag{3,p.132}
\end{align*}
$$

hence $\gamma_{4}(2 n+1) / 8$ and $\gamma_{4}(2 n) / 24$ are multiplicative. Also

$$
\gamma_{8}(n)=(-1)^{n-1} 16 \Sigma_{d}(-1)^{d-1} d^{3}
$$

$$
[1, \text { p. } 315] .
$$

