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1. Wiener did not work in potential theory for very long (only 
about two years around 1924), but that was enough to bring about in 
this field (the so-called classical potential theory), as in many others, 
some fundamental contributions: a definitive form of the generalized 
solution of the Dirichlet problem for a continuous given boundary 
function, the notion of capacity for general compact sets and the 
famous Wiener criterion of regularity. 

2. Already in 1923, he wrote with Phillips a paper [28]* on Nets and 
the Dirichlet problem where this problem was solved for a polycubic 
domain then for domains with smooth boundaries by a limit process 
from a problem for functions on a discrete net and a mean condition. 
This idea of using linear equations for a preliminary problem relative 
to finite differences, which is now a basic tool with computers for 
partial differential equations was not common forty years ago; I 
know only the previous example of Le Roux on harmonic functions 
in R2 (J. Math. Pures Appl., 1914). 

3. In pure potential theory, the first fundamental paper of Wiener 
[24] Certain notions in potential theory in January 1924 gave and 
studied a precise definition of a generalized solution and the first 
definition of capacity for an arbitrary compact set. 

For a long time, it was known that the classical Dirichlet problem 
does not always have a solution (case of an isolated boundary point of 
Zaremba, spine of Lebesgue) and there appeared more or less clearly 
the need to define a suitable generalized solution which always exists 
tha t would be later studied at the boundary; such a harmonic func
tion corresponding to the given boundary function was in evidence 
in various methods, where further restrictions on the boundary al
lowed to show that it was actually a solution (Poincaré, Zaremba, 
Lebesgue, Bouligand, Kellogg . . . ). But in a clearer and more strik
ing way than the others, Wiener introduced for a bounded open set 
(and for a similar "exterior" problem) a precise generalized solution, 
that he studied further without restrictions: it was the limit of the 
classical solution for an increasing sequence of regular open sets 
fln C ö (Uön = fl) ("regular" means tha t there is always a solution for 
the classical Dirichlet problem) and a boundary function, given as 

* The bold-faced numbers in brackets refer to the numbered references in the 
Bibliography of Norbert Wiener. 
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