ROLLING

BY R. H. FOX

Communicated by N. E. Steenrod, June 28, 1965
If k is a tame arc in the 3 -dimensional half-space $R_{+}^{3}=(x, y z, t$: $z \geqq 0, t=0)$ that spans the plane $R^{2}=(x, y, z, t: z=0, t=0)$ then a locally flat 2 -sphere S in the 4 -dimensional space $R^{4}=(x, y, z, t$:) is generated by k when R_{+}^{3} is rotated about R^{2}. Nowadays the sphere S is said to be derived from k by spinning. By knotting k in various ways, various types of knotted spheres S can be obtained [1], but it is known that not every type of (locally flat) knotted sphere can be so obtained [2].

Some years ago I considered spheres S that are obtained from k by combining the spinning process with a simultaneous rotation of k about its "axis" (in R_{+}^{3}). This operation has come to be known as twist-spinning. The specific question that I raised at that timewhether the sphere obtained by twist-spinning a trefoil 3_{1} (using a simple twist) is actually knotted-has been answered (in the negative) recently by C. Zeeman [3].

In this note I want to introduce another variation of the spinning process, one that I call roll-spinning. It is the same as twist-spinning except that instead of twisting, i.e. rotating k about its axis in R_{+}^{3}, I roll the knot along its axis. This operation (whose name derives from its resemblance to the operation of "rolling a stocking") is somewhat difficult to describe in totally precise terms, and I will content myself here with referring to Figure II, in [3], where it is shown how to roll a figure-eight knot 4_{1}.

My objective is to show that roll-spinning is not just twistspinning in disguise (a state of affairs that one might suspect to be so). Specifically I shall show that a simple roll-spin of 4_{1} produces a type of knotted sphere S that cannot be obtained from 4_{1} by any twistspin.

Figure I gives a projection of 4_{1} with the meridian elements of its group G indicated by x, a, b, c. From this figure the presentation

$$
(x, a, b, c: a b=b x, c b=a c, c x=x b)
$$

is read off in the usual way [2], [4]. If we give 4_{1} the twist-spin in which 4_{1} is rotated about its axis n times the group Γ_{n} of the resulting sphere (cf. [2], [3]) has presentation

