SMOOTHING LOCALLY FLAT IMBEDDINGS ${ }^{1}$

BY R. C. KIRBY
Communicated by E. Dyer, August 23, 1965

The fundamental imbedding problem for manifolds is to classify the imbeddings of an n-manifold into a q-manifold under ambient isotopy. We announce here that the differentiable and topological cases of this problem for differentiable manifolds are the same if $2 q>3(n+1)$ and $q \geqq 8$.

This follows from Theorem 2 below which states that a locally flat imbedding of a compact differentiable manifold M^{n} into a differentiable manifold Q^{q} is ambient isotopic to a differentiable imbedding if $2 q>3(n+1)$ and $q \geqq 8$. Since this ambient isotopy may be chosen arbitrarily close to the identity map, the set of differentiable imbeddings is dense in the set of locally flat imbeddings of M^{n} in Q^{q}.

It will then follow that two locally flat imbeddings of M^{n} into Q^{q} are ambient isotopic if they are homotopic; hence the classification problem reduces to a problem in homotopy theory.

Theorem 1. Let $f: B^{n} \rightarrow$ int Q^{a} be a locally flat imbedding of the unit n-ball into Q^{q}. Such an f always extends to $f: R^{q} \rightarrow \operatorname{int} Q^{q}$. Let C^{n-1} be a compact differentiable submanifold of $\partial B^{n}=S^{n-1}$, and suppose that f is differentiable on a neighborhood of C^{n-1} in B^{n}. Let $q \geqq 7,2 q>3(n+1)$ and $\epsilon>0$. Then there exists an ambient ϵ-isotopy $F_{t}: Q^{q} \rightarrow Q^{q}, t \in[0,1]$, satisfying
(1) $F_{0}=$ identity,
(2) $F_{1} f$ is differentiable on int B^{n} and on a neighborhood of C^{n-1} in B^{n},
(3) $F_{t}=$ identity on $Q-N_{\epsilon}\left(f\left(B^{n}\right)\right)$ and on $f\left(R^{n}\right.$-int $\left.B^{n}\right)$ for all $t \in[0,1]$,
(4) $\left|F_{t}(x)-x\right|<\epsilon$ for all $x \in Q^{q}$ and $t \in[0,1] .\left(N_{\epsilon}(X)\right)$ is the set of points within \in of X.)

Theorem 2. Let $f: M^{n} \rightarrow Q^{q}$ be a locally flat imbedding such that either $f\left(M^{n}\right) \subset$ int Q^{q} and $q \geqq 7$ or $f^{-1}\left(\partial Q^{q}\right)=\partial M^{n}$ and $q \geqq 8$. Let $2 q>3(n+1)$ and $\epsilon>0$. Then there exists an ambient ϵ-isotopy $F_{t}: Q^{q} \rightarrow Q^{q}, t \in[0,1]$, satisfying
(1) $F_{0}=$ identity,
(2) $F_{1} f$ is a differentiable imbedding,

[^0]
[^0]: ${ }^{1}$ This is an announcement of a portion of the author's dissertation at the University of Chicago written under Professor Eldon Dyer.

