FIRST ORDER PROPERTIES OF PAIRS OF CARDINALS

BY H. JEROME KEISLER
Communicated by D. Scott, September 23, 1965

We consider models of a countable first order logic L with an identity symbol and predicate symbols $U, P_{0}, P_{1}, \cdots, U$ being unary. A model $\mathfrak{U}=\left\langle A, U_{\mathfrak{t}}, P_{0 \mathfrak{Y}}, \cdots\right\rangle$ for L is said to be a twocardinal model if A is infinite and the power of U_{ϑ} is less than the power of A. By a set of axioms for two-cardinal models we mean a set Σ of sentences of L such that \mathfrak{A} is a model of Σ if and only if there exists a two-cardinal model which is elementarily equivalent to \mathfrak{N}. Using results of Fuhrken [1], Vaught [4] proved the following theorem.

Theorem (Vaught). There is a set of axioms for two-cardinal models. If the language L is recursive, then there is a recursive set of axioms for two-cardinal models.

We say that L is recursive if the number of argument places of the symbol P_{n} is a recursive function of n. Vaught's proof depends on the fact that if Σ^{*} is a recursive set of sentences in an extension L^{*} of the language L, then there is a recursive set Σ of sentences of L such that Σ and Σ^{*} have exactly the same consequences in L. In principle his proof can be used to construct a particular set of axioms for two-cardinal models, but the set seems to be so complicated that in practice one cannot easily tell whether or not a given sentence belongs to it. Vaught has proposed the problem of finding a simple set of axioms for two-cardinal models. The author heard about Vaught's problem through Dana Scott.

In this note we shall give a particular set of axioms for two-cardinal models which is simple enough to be written down as a fairly short axiom scheme. Our theorem was stated without proof in [2]. Let the individual variables of L be $v_{i}, x_{i}, y_{i}, z_{i}$, where $i=0,1,2, \cdots$.

Theorem 1. A set of axioms for two-cardinal models is given by the set Γ of all sentences of the form

$$
\begin{gather*}
\exists v_{0} \forall x_{0} \exists y_{0} Z_{0} \cdots \forall x_{n} \exists y_{n} z_{n} \\
{\left[\bigwedge_{i=0}^{n} v_{0} \neq y_{i} \& \bigwedge_{i, j=0}^{n}\left(U\left(x_{j}\right) \& x_{i}=z_{j} \rightarrow y_{i}=x_{j}\right)\right.} \tag{*}\\
\left.\quad \& \bigwedge_{j=0}^{m}\left(\phi_{j}\left(x_{0}, \cdots, x_{n}\right) \rightarrow \phi_{j}\left(y_{0}, \cdots, y_{n}\right)\right)\right] .
\end{gather*}
$$

