EXAMPLES IN HELSON SETS

BY ROBERT KAUFMAN

Communicated by W. Rudin, September 28, 1965
A compact subset P of a locally compact abelian group G is said to be a Kronecker set in G [1, p. 97] if every continuous unimodular function on P is uniformly approximable on P by continuous characters of G. P is a Helson set [1, pp. 114-115] if for some $\epsilon>0$ and each $\mu \in M(P)$:

$$
(H, \epsilon) \quad \epsilon\|\mu\| \leqq \sup _{\gamma \in \Gamma}\left|\int_{G} \gamma(x) d \mu(x)\right|, \quad\|\mu\|=|\mu|(P),
$$

Γ being the dual of G.
If P is a Kronecker set in G, P satisfies $(H, 1)$ by [1, Lemma 5.5.1]. It was asked in [1] whether ($H, 1$) implies that P is a Kronecker set. Wik [2] constructed a class of counter-examples in the real line; in this note a different type of construction is announced.

Let X be a compact Hausdorff space and U the (abstract) group of continuous unimodular functions on X, Γ a subgroup of U which separates the points of X. Then X is embedded as a topological subspace of $\hat{\Gamma}$ and is a Kronecker set in $\hat{\Gamma}$ if and only if Γ is uniformly dense in U. We give below two examples in which Γ is a proper closed subgroup of U but for which $(H, 1)$ holds for measures in X.
(a) X is the 1 -torus and Γ the group of functions with winding number, or degree, zero. In this case the Kronecker condition holds on the complement of any arc, so ($H, 1$) holds.
(b) X is the unit interval $[0,1]$ and Γ is the set of all functions $e^{i f}, f$ real and $\int_{0}^{1} f d x=0$. In this case $U=\Gamma \cdot \mathbf{C}, \mathbf{C}$ being the subgroup of constant functions.

In (a) and (b) the groups Γ have the form $\exp ^{i H}$, where H is an additive subgroup of the real continuous functions on X. In each case H contains a dense subgroup H_{1} algebraically isomorphic to $Z \oplus Z \oplus Z \oplus \cdots$; the exponential mapping is an isomorphism onto Γ. In (a) H_{1} is the subgroup of trigonometric polynomials with coefficients in $Z+\sqrt{2} Z$; in (b) one uses the same coefficients with the generators $\left\{x^{n}-1 /(n+1): n \geqq 1\right\}$. Using the smaller subgroups of U determined by these subspaces we can embed $X \rightarrow T^{\omega}$ and have the same phenomenon in regard to measures in X. In view of Theorem

