EXAMPLES IN HELSON SETS

BY ROBERT KAUFMAN

Communicated by W. Rudin, September 28, 1965

A compact subset P of a locally compact abelian group G is said to be a *Kronecker set* in G [1, p. 97] if every continuous unimodular function on P is uniformly approximable on P by continuous characters of G. P is a *Helson set* [1, pp. 114–115] if for some $\epsilon > 0$ and each $\mu \in M(P)$:

$$(H,\epsilon) \quad \epsilon ||\mu|| \leq \sup_{\gamma \in \Gamma} \left| \int_{G} \gamma(x) d\mu(x) \right|, \qquad ||\mu|| = |\mu| (P),$$

 Γ being the dual of G.

If P is a Kronecker set in G, P satisfies (H, 1) by [1, Lemma 5.5.1]. It was asked in [1] whether (H, 1) implies that P is a Kronecker set. Wik [2] constructed a class of counter-examples in the real line; in this note a different type of construction is announced.

Let X be a compact Hausdorff space and U the (abstract) group of continuous unimodular functions on X, Γ a subgroup of U which separates the points of X. Then X is embedded as a topological subspace of $\hat{\Gamma}$ and is a Kronecker set in $\hat{\Gamma}$ if and only if Γ is uniformly dense in U. We give below two examples in which Γ is a proper closed subgroup of U but for which (H, 1) holds for measures in X.

(a) X is the 1-torus and Γ the group of functions with winding number, or degree, zero. In this case the Kronecker condition holds on the complement of any arc, so (H, 1) holds.

(b) X is the unit interval [0, 1] and Γ is the set of all functions e^{if} , f real and $\int_0^1 f dx = 0$. In this case $U = \Gamma \cdot C$, C being the subgroup of constant functions.

In (a) and (b) the groups Γ have the form \exp^{iH} , where H is an additive subgroup of the real continuous functions on X. In each case H contains a dense subgroup H_1 algebraically isomorphic to $Z \oplus Z \oplus Z \oplus \cdots$; the exponential mapping is an isomorphism onto Γ . In (a) H_1 is the subgroup of trigonometric polynomials with coefficients in $Z + \sqrt{2}Z$; in (b) one uses the same coefficients with the generators $\{x^n - 1/(n+1): n \ge 1\}$. Using the smaller subgroups of U determined by these subspaces we can embed $X \to T^{\omega}$ and have the same phenomenon in regard to measures in X. In view of Theorem